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Abstract

A piezoelectric medium of transversely isotropic symmetry with continuous fiber inclusion parallel to the axis of
symmetry is considered. The problem is equivalent to a two-dimensional ‘quasi-plane’ piezoelectric medium containing a
2D inclusion. The inclusion is assumed to undergo a spatially uniform 0(¢)-type time domain transformation. The
continuous fiber has elliptical, circular and arbitrary cross-sections. The solutions of the inclusion problem is expressed
by scalar potentials. In the time domain two of these functions correspond to the retarded potential integrals of the
inclusion. Their frequency domain representation which we shall call the ‘dynamic potentials of the inclusion’ are also
considered. Integral formulae are derived for continuous fiber inclusions with elliptical cross-sections. Known closed-
form solutions are reproduced for circular fibers. For fibers with arbitrary cross-sections a numerical method based
on Gauss quadrature is applied. High accuracy and efficiency of the numerical method is confirmed. Characteristic
superposition and runtime effects for the inclusions are found.
© 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

In smart/intelligent structures the knowledge of the dynamic characteristics of inhomogeneous materials
are of high interest in supersonics, microwave technologies and in non-destructive evaluation (NDE) (e.g.
Pao, 1978). Despite this high importance of the dynamical modelling there is only few work done as
compared to the modelling of static mechanical properties. Talbot and Willis (1983) have analyzed the wave
propagation effects caused by randomness of the microstructure. They gave estimates of dynamic material
characteristics such as dispersion and attenuation.
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Of special importance in the mechanics of materials is the solution of inclusion problems for inclusion
geometries of interest. In statics Eshelby determined in his classical 1957 paper the strain inside an elliptical
inclusion which undergoes uniform eigenstrain for an isotropic medium. By utilizing Dyson’s theorem
Rahman (2002) solved the inclusion problem of an elliptical inclusion with polynomial eigenstrain in closed
compact form in terms of ‘potential integrals’ which are related to elliptic integrals.

The dynamical fields are of interest in the frequency and time domain. In the quasi-plane transversely
isotropic medium the frequency domain solutions are determined by solutions of inhomogeneous Helm-
holtz equations. Frequency domain solutions we shall call ‘dynamic potentials’. Their time domain repre-
sentations are the retarded potentials being the causal solutions of the corresponding inhomogeneous wave
equation (e.g. Jackson, 1999).

There are only a few cases where closed-form solutions are available in the dynamic framework, namely
for spherical inclusions (Mikata and Nemat-Nasser, 1990; Michelitsch et al., 2003a; Wang et al., 2003), for
circular (cylindrical) inclusions (Cheng and Batra, 1999; Michelitsch et al., 2003a) and for the quasi-plane
piezoelectric medium with circular inclusion (Michelitsch et al., 2002). In the static limit of vanishing an-
gular frequency, the dynamic potentials are transferred into the corresponding Newtonian potentials. In the
case of inhomogeneous elliptical source regions it has been shown explicitly (Michelitsch et al., 2003b) that
classical results of Ferrers (1877) and Dyson (1891) are reproduced.

The present study is devoted to the quasi-plane medium with inclusions being of special engineering
interest. This material system is equivalent to a three-dimensional medium containing continuous fibers.
The fiber cross-section represents the two-dimensional “inclusion” in the quasi-plane medium.

This paper is organized as follows: In Section 2 we give a formulation of the dynamic inclusion problem
in the 2D piezoelectric quasi-plane medium. The dynamic electroelastic fields (displacements and electric
potential) are determined in terms of three types of scalar potentials. The time domain solution is essentially
determined by two types of scalar retarded potentials. These potentials are convolutions of retarded Green’s
functions which are considered briefly in Section 3. In Section 4 we derive integral formulae for the retarded
potentials for 2D source regions with elliptical shapes (corresponding to fiber inclusions with elliptical
cross-sections) and of 2D elliptical rings (elliptical fiber tubes). Both the time domain and the frequency
domain are considered. For circular source regions closed-form results are obtained being in agreement
with those derived by Michelitsch et al. (2002, 2003a). Section 5 is devoted to the numerical evaluation
based on Gauss quadrature ' of the retarded and dynamic potentials of source regions with arbitrary
shapes and the electroelastic dynamic fields are given in Section 6. The efficiency of the numerical method is
demonstrated in Section 7 where the retarded potentials of a circular inclusion are shown to coincide with
high accuracy by using both the pure numerical method and the closed-form results.

2. Dynamic inclusion problem

We consider an infinite two-dimensional ‘quasi-plane’ piezoelectric medium with transversely isotropic
symmetry. All field quantities depend only on the plane space vector r = (x,y) in the plane of transverse
isotropy. We call this medium ‘quasi-plane’ since the displacement u(r) = (u;,u2, u3) also has an anti-plane
z-component as in a 3D medium with u; = u;(x, y) and £ (-) = 0. It is convenient to introduce a generalized
displacement field % = (uy, uy, u3, us) where uy = @ indicates the electric potential.

The moduli of this medium include the elastic constants C = {Cj;, Cs, Cus, Ci3}, the piezoelectric con-
stants e = {e;s, e31}, and the dielectric constant y = {5, }. The remaining moduli Cs;, es3, 153 of the 3D
transversely isotropic medium are absent due to % (-) = 0. The linear constitutive relations are given by

! For a detailed discussion we refer to our recent paper, Wang et al. (2003).
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on = Cn %+ (Cii — 2Css) aayz C44%+el5 ag;:
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where ¢ denotes the stress tensor and D the clectric displacement field. The equations of motion and the
charge conservation law can be compactly written as (Michelitsch et al., 2002)

2

(F(V) 22 J) U+F =0 (2)

where V = e, - 012 & ® denotes the plane gradient operator and J = e; ® e; + e, ® e, + e; @ e3 is the three-
dimensional unity tensor. 7 — (f1,./2, /3, f4) denotes the generalized force density with the density of body
forces f; (i = 1,2,3), the density of free electric charges f4 = —p, and the mass density p. The time coor-
dinate is denoted by ¢. 7 (V) is a 4 x4 matrix second order differential operator and has the form

T (V)=71(V)+Tu(V) (3)
where
yI(V) = C“V ® V + C(,()(BA — V ® V)

4)
Tu(V)={Cues@e; +e;s(esQes+e,Qe;3) — 161 @eq}a

and 4 = a 5+ 87 is the plane Laplace operator. The {e;} (i = 1,2,3,4) are a Cartesian basis consisting of
four unit Vectors with % = ue; and 0 = e, Qe; + e, R e, denotes the plane unity tensor. As we observe in
(4), 7 (V) consists of a pure elastic part 7| acting on u; and u, in the isotropy plane and a second part 7
which describes the piezoelectric coupling of u; and wuy.

Now we consider the quasi-plane medium with 2D inclusion. We assume that the inclusion undergoes
eigenstrain €* and eigenelectric field E*. The inclusion has the same electroelastic moduli C, e, § and mass
density p as the piezoelectric transversely isotropic matrix material. The eigenfields are

€' (r.1) = p,(1)o()e’,  E'(r,1) = p,(r)d(r)E’ ()

where €’ and E are constant. () denotes Dirac’s delta function and 6(¢)p,(r) = ()£ (r)O,(r) the source
density distribution ? where @,(r) is the characteristic function of the inclusion S. * Assuming the absence
of external body forces, the field equations for the general displacement field % in the medium with in-
clusion then take the form of (2)

2

(g‘(V) - p%])gll +F =0 (6)

% The approach to be derived here allows arbitrary scalar functions p, with [ p,(r)d’r < .
*O,r)=1,reSand O,(r) =0,r ¢S.
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with #* = (f{", f5, /5, f;) and
f- = ( 1]7’36}: ekijEZ) (i = 17 27 3) (7)
f;t - (e/’éers‘ + r’jkE*)

where 9; = {5} and

o205
) = —<2C ag* + Cy aa* +(Cn — 2C66)aa€il)
fi= <2C44<a€13 a) (aE* a@b; )) ®
=G ) o (5 5))
The field % = (u;) (i = 1,2,3,4) can be expressed in terms of the Green’s function @, namely
(r.1) /g,, D) dF 9)
It is convenient to introduce a 4 x4 potential ¢ according to
/gr—rt (r)d*r’ (10)
This potential % then obeys
<3’(V)péj;])g(r,t)Jrlps(r)é(t) =0 (11)

Thus the generalized displacement field of Eq. (9) becomes
le(l'7 t) :ﬁ*(V)gk,-(r,t) (12)
where f(V) (i = 1,2,3,4) is the first order differential operator defined by

F(V) = _(Cijr&?Y - ekion)aj (i=1,2,3)

{f(v) = —(eje€ +17,kE°)6 (13)
or
(V) = —(cne‘;l aa +(Cyy — 2c66)622§ 420k, aay )
f(V) = —<2c66e?26—i+ Ciied, aay (Ciy — 2c66)e‘;la%> »
(V) = —<2C44<€?;a +623%> e15<E‘fa -s-Eg%))
o= fanfarad) n(adend)
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The components ¥,,, = 4,,, (m,n =1,2,3,4) of (10) have the following physical meaning:

9;(R,7) (i,j = 1,2,3) is the elastic displacement in i-direction at spacepoint R and time 7 caused by the
force distribution p,(r)d(¢) acting in j-direction;
94(R,7) (i =1,2,3) is the elastic displacement in i-direction at spacepoint R and time t caused by the
electric charge distribution p, (r)d(¢);
9, (R, 1) (j = 1,2,3) is the electric potential at spacepoint R and time 7 caused by the force distribution
p,(r)6(¢) acting in j-direction;
944 (R, 1) is the electric potential at spacepoint R and time 7 caused by the electric charge distribution
P (1)3(0).
In view of the transversely isotropic symmetry of the operator 7 (V) of Eq. (4) ¢ can be decomposed
into
% = G+ Gy (15)

where Gy corresponds to the pure elastic part in the isotropy plane and Gy indicates the piezoelectric part.
These parts fulfill the separate equations

(719~ Op(ji;) Gi + p,()5()0 = 0 (16)

62
(raj.ll(v) —e® e3p¥> G+ ps(r)o(t)(es @es +esRey) =0 (17)

Eq. (16) describes the propagation of two acoustic waves in a purely elastic 2D isotropic medium. Eq.
(17) describes the wave propagation of one coupled electroacoustic axial plane shear wave which is
propagating in (x, y)-plane. Its polarization is in the anti-plane 3-direction, i.e. perpendicular to the plane of
transverse isotropy. 4 G| is obtained as (Michelitsch et al., 2002)

1 1
Gi(r, 1) = =—0g,(r, 1) + =V @ V{h(r,t) — hy(r,2)} (18)
Ces P
where g, is determined by (¢ = ¢;)
RN T 19
Cz 6[2 g px(r) ( ) - ( )
and functions 4; are defined
az
Zh =0 2
Sl =g (20)
where

o= o= (21)
p p

¢1 and ¢; indicate the wave speeds of the longitudinal and transversal polarized acoustic waves, respectively
both propagating in (x,y)-plane.

4 An extensive discussion can be found in Levin et al. (2002).
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G can be derived in the same way and yields (Michelitsch et al., 2002)

1 e
Gu(r,t) =e; ®es=—g3(r,1) + (es ® ey + & @ &3) =——gs(r, 1)
C44 C447711
els 1
e ey | =——g(r 1) +—g4(r)o(2) (22)
44171, [
g3 and g4 are solutions of the equations
A Lo +p,(r)6(t) =0 (23)
3 o £ Ps N
c R 2
= ﬂ7 Cy = Cy +@ (24)
p M

g4 is the Newtonian potential defined by the static Poisson equation
—Agy + p,(r) = 0 (25)

Eq. (22) describes an electroacoustic coupled shear wave propagating with velocity ¢ in (x, y)-plane with
anti-plane transverse polarization #3. The electroacoustic coupling is reflected by 4, = ;ﬁig. Eq. (22) rep-
resents the only electroacoustic (piezoelectric) coupled wave existing in the quasi-plane piezoelectric me-
dium of transversely isotropic symmetry.

With Egs. (18) and (22), the problem of solving the field equations (11) is reduced to the determination of
only three types of scalar potential functions, namely the retarded potential function g defined by (19),
related function 4 of (20) and the Newtonian potential defined in (25).

In the subsequent sections we derive integral formulae for g and 4 for elliptical inclusions and propose a
numerical scheme useful for the evaluation for inclusions of arbitrary shapes.

3. Retarded Green’s functions

In this section we will give a brief introduction of the related retarded Green’s functions. Detailed
derivations can be found in the papers of Levin et al. (2002) and Michelitsch et al. (2002). We mainly focus
on the causal space-time representation. The defining field equation for the retarded Green’s function % is
defined by (11) when we put p,(r) = 6*(r). This retarded Green’s function is fully determined by the three
types of scalar Green’s functions, namely (Michelitsch et al., 2002)

A—%<§+Q g+ (o) =0 (26)

for the functions g, ,; and

Q—;<;+§i{;+%3+ymmg:0 (27)

for illvz, where g = %fz, and finally
—4g,+8(r) =0
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thus

g.(r) = % Inr (29)

where r = \/x% + )2.

In Egs. (26) and (27) we introduced an infinitesimal positive damping constant ¢ — 0+ in order to get a
well defined problem leading to the retarded Green’s functions (e.g. Levin et al., 2002).

Let us note that 4 can be expressed by g by the convolution

h(r 1) = / N g(r,t—1)f(1)de (30)
where £ is the Green’s function defined by
o 1.,
i+ 70 =00 (31)
thus
(1) = 10(t)e™ (32)

where O(t) denotes the Heaviside step function. > The exponential factor e~ can be omitted for finite #, but
has to be taken into account when integrating this function to infinity.
The Green’s function g(r,t) defined in Eq. (26) is given by (e.g. Levin et al., 2002)
. 1 O@-:
g(r,t) = P <—)2
t2 _ ('_)

c

(33)

Expression (33) describes the physical propagation of an outgoing singular circular plane wave with
propagation velocity c. The @-function ensures runtime causality, that is, the outgoing wave should reach a
circle with radius r (r = \/x> + »?) around the source point # = 0 only when ¢ = r/c. For ¢ < r/c when the
circular wave has not yet reached the circle with radius r, the Green’s function is vanishing.

By evaluating integral (30) we obtain for / the expression (Levin et al., 2002)

- Ot—: t 22 2
h(r,t)%{tln(%Jr Cr—21>— tZZ—z} (34)

With relations (33) and (34) the causal dynamic Green’s functions corresponding to (18) and (22) are
completely determined and obtained in explicit form as (Michelitsch et al., 2002)

~ 1 1 . .
G (r,t) =—08,(r,t) + =V @ V{hi(r,t) — hy(r, 1)} (35)
Ces P
and
A 1. ers
Gu(r,t) =e; @ es=—§;(r,1) + (e D ey + ey @ ;) = g3 (r, 1)
Cu Caany,
els L
ey @ey| =—25(r 1) +—2(r)o(z) (36)
a4y i

>O(s)=1ifs>0and O(s) =0if s < 0.
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where

. 1
84(r) o Inr

and the wave velocities ¢; are given in (21) and (24), respectively.

4. Retarded potential integrals for fibers and fiber tubes with elliptical cross-sections

In this section our goal is to derive potential integrals g and 4 defined in Eq. (19)ff. for a continuous fiber
and fiber tube with semi-axes a;, a,. The quantity

2 2
XY

_r 47 38

P a%+a§ (38)

characterizes the internal p < 1 and the external space p > 1, respectively. We consider a wave equation of
the special form (m =0,1,2,...) °

1/0 2
A—— =+,
[ c2<6t+/)

Here we introduced a phenomenological damping constant y > 0 leading to causal behavior (e.g. Levin
et al., 2002). g,, can be written in the form (a = (a;,a))

gn+O(1 —p)p™d(t) =0 (39)

1
&mmn:AzWM¢mmmﬁ@/ (40)

where @ corresponds to a 2D elliptical ring (corresponding to a 3D continuous fiber tube with elliptical
cross-section) with semi-axes p'a; obeying the equation

1/0 2
P‘Z(&*O

Applying Fourier transformation, &(r,a, ¢, p’) can be written in the form

po(ra,tp) +6()dp—p)=0 (41)

pwuaﬁwﬁ=gm2/€“&Mﬁh0¥k (42)
where
ok 1) = cO(1) Smkd“ e (43)

¢ Obviously g = 3°,,_ @ngn then corresponds to a source density p, = @(1 — p)f(p*) with f(p?) = S22 ; @,p™.
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indicates the Green’s function of a damped harmonic oscillator

S(k) =

6315
7 of eigenfrequency ck and
/ R 5(p — p"A = 2ma a0 Jo(Kp') (44)
Jo(+) indicates the Bessel function of the first kind and of order zero and K =
further evaluation the following transformation is useful (Appendix A)

(a1k1)2 + (azkz)z. For
[ rtaato = f(K"

E_s(f()>s2(ﬁ)dg(f<)

45
aa Jig=1 43)
where
b= TR), S(R) = e = (k) = ek i (46)
1 2
Eq. (42) then assumes the form
~ ~ Qn’
o(r,a,4,p) = %Reﬂ £(K)dQ(K) de(m)
(2m) Kl=1

: (47)
- (pn + p'W) + ct + ie)

wi=t (s(K)K
By using (45) this equation can be written as (r = (x;) = x; = pan;, ¥ =X, = a;n]
account the symmetry n, < —n

oyt
Or,a,1) = ajacO(t)e

) de(n)
R do(k .
(2m)’ e/f«l—l ( )/nw (k- (

(r—1) + ct + ie)
When we first evaluate the k-integral

' = 1) and taking into

(48)
we obtain (Levin et al., 2002, Egs. (A.11)ff. therein)
T _Ir=r]
[ do o)
I=c — = (49)
o (r—r|cose+ct+ie) p o lerp
2
Then (48) becomes

- r/\z

&(r,a,t) = ajae™ / ( 71‘)
=1 27

2

which is the space-time convolution of of the Green’s function g(r,7) = @(t — %) / (2n\/t2 - %) of the
2D wave equation ~ with the density 6(1 — p)d(¢). On the other hand, the n'-integral in (48) is
2n
r-Re [ S0
o coso+¢E+ie

k. r+cl

(51)
and yields
o -1)
I =2n——=(0(§) —O(-¢

when we put ¢ =

7 This Green’s function fulfils (& (< + 2+ kg (k, 1)

gk, 1) = 5(2).
8 k1 = cos @, k, = sin g, dQ(k) de.
? g is the solution of (4 — 4

— 55)8(r,1) + 8*(1)3(1) = 0.
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and can be also rewritten as
1= Zn/ dop((cosh p — &) — 6(cosh ¢ + &)) (53)
0

With (52) we find for (48) the 1D-integral

@(r,a,t)f‘““z@ ° / (-t — sk D@k r+ct)— O(— [k r+c))}dok)  (54)
= \/k r+ ct)? — s2(k)

Using (53) yields
<p(r,a,t):M dQ(f()/“dd){a(t k-r+s(k )cosh(p)
lk|=1 0

2n c

—5<t k-r+s(k )coshqﬁ)} (55)

This expression is especially useful to obtain the frequency domain representation '° as (p= @)

(I' a, ﬁ) . dQ(lA() /OO d(]ﬁ (@[i{ -r+ S(IA() cosh ¢]eiﬁ(ﬁ»r+s(ﬁ)cosh ¢)
[k[=1 0

aa

2n
— O] — (k -1+ s(k) cosh ¢)]e #krts(k )COSM’)) (56)

which assumes by using (45) together with (46)

1 [ . P
D(x,y,a1,a, ) = — /A dQ(K)s*(K) / dq’)(@&)K-n—|—coshqb]e‘ﬁ"('()@'(‘“*c"m"’)
|K|=1

2n 0
[ (pK n + cosh d))] —iBs(K (pKn+cosh¢>)) (57)

where x; = pa;n;. The dynamic potential (57) is the solution of the Helmholtz equation of a homogeneous
elliptical shell being the solution of
(A+B)D+(1-p)=0 (58)

For the internal space (p < 1) is cosh ¢ + pIA( -n > 0, thus the second @-function in (57) is vanishing.
Hence (57) becomes for the internal space

(pm(r a,p) = 21 / dQ(ﬁ)Sz(ﬁ)/ d¢eiﬁs(ﬁ)@ﬁ-n+cosh¢) (59)
T JiK=1 0

Egs. (57) and (59) is the two-dimensional analogue of the corresponding expression of an elliptical shell
in the 3D space (Michelitsch et al., 2003b; Wang et al., 2003). Taking into account the definition of the
Hankel function (e.g. Courant and Hilbert, 1989) (f =%, » > 0)

< i
A elﬁscosh¢d¢ — E1_1(51)(&5,) (60)

and by utilizing (45), ™ of (59) becomes (k; — n, and x, = an), ¥ = \/aln}? + a3n} denoting a parame-
terization of the radius of the 2D elliptical shell)

' Being defined by [*°_e ®(r,a,¢)d.
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P"(r,a, p) = %alaz / . ™ iV (Br') dQ(n') (61)
or
O (r,a, B) = a1as / | ¢ 5By dQ() (62)
n'|=1

where g(fr') = iHél)(ﬁr’) denotes the Green’s function of the 2D Helmholtz equation being defined by

(4+ B (pr) + &) =0 (63)
Eq. (61) which holds for the internal space is equivalent to the convolution
i / !
o0 ) =gaar | Hy'(Fle —r]) af(w) (64)

An analogue relation as (61)—(64) exist also for an 3D elliptical shell (Michelitsch et al., 2003b). In that
paper the dynamic potential of an elliptical shell (semi-axes a;, a;, a3) was obtained as
(x = (sin ¢ sin 0, cos ¢ sin 0, cos ) dQ(k) = sin 0dOde)

1 R . o o
o (x,y,z, a,a»,as, /3) = E - dQ(K)S%(K)(@[Pk ‘n4+ l]elﬁu(x)(PmnH) _ @[—(PK n4 1)]eflﬂ33(x)<Pn<n+l))
(65)
[ . . . .
where s3 = 1 =+ 3+ 3, x; = Pa;n;, and P’ = Z—i +£—§+ Z—i Eq. (65) holds in the entire space. It is easily
1 2 3 1 2 3

verified that expression (57) is reproduced by the limiting transition
(p<x7yaal7025ﬁ) = hm ‘153()57}’727“17@270!3;/3) (66)
az—o00

taking into account that lim,, . s3(k) = s(IA() /sinf, P — p and put cosh ¢ = -L-. Moreover we use the
symmetry of the integrand of (65) with respect to 6 =7 for a3 — oo. This transition also can also be
performed directly in the time domain.

In view of (57) and (59) we observe in analogy to the 3D-case that the imaginary part Im@ is given by

1

Imd" (r,a, f) = 5 /El dQ(K)s*(K) /Ox d¢ sin[Bs(K)(pK - n + cosh )] (67)

which holds for both, the external and the internal space. Integrating (47) in (40) yields for the retarded
potential g = go(m =0) of a homogeneous density p, = @(1 —p) the expression (r’ = (x}) = (an}),

s(k) = /a2 + aglg) |

g(r,a,f) = %ﬁg’}“l{e /1;1 ‘lf(g‘)) /n/l(kf’)ln[li- (r+1) + ct + ic] dQ(R) (68)

Taking into account (45) this expression can also be written as

~

g(r,a,1) = %Re / - dO(K)s(K) / g (R -i)In(s(R)K - [i' + pn] + ot + i) dQ@)  (69)
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4.1. Homogeneous circular fiber and circular fiber tube

Consider a homogeneous fiber with circular cross-section of radius a = a; = a, and p,(r) = O(a —r).
Eq. (68) then takes the form (k-r = rcos¢,,k-r = acos @,)
ca®(t)

—yt 2n 2n
= —;Re/ do, / cos @, In[rcos ¢, + acos @, + ct + ie]do, (70)
0 0

g(r,a,t) n

coinciding with the expression obtained by Michelitsch et al. (2002) (Eq. (5.15) therein).
It is illuminating to return to (48) which becomes

i OO -
o @2n)?*  Jo Jo (rcose, +acosg, + ct + ie)

Except for the multiplier ¢®> the variables » and a occur symmetrically in this expression. This is a
consequence of Ivory’s theorem. ! That is, we only need to evaluate above expression for the internal space
r < a to obtain @ also for the external space r > a by exchanging » and a in the expression @/a*. For
a=a; = a, (59) becomes (pK - n + cosh ¢ > 0)

dﬁi“(r,a,ﬁ) _ ;_2 /27I eiﬂrcosq)dw /OO eiﬁacoshd)dqs (72)
T Jo 0
or
D"(r,a, B) = TJo(ﬁ”) Y(pa) (73)

where J, and Hé” denote the Bessel- and Hankel functions, respectively. Exchanging r and a in the ex-
pression @™ /a* we obtain for the external space the expression

> (r,a, f) = TJo(ﬁa) Y (pr) (74)
This equation can also be written as
cpout(},,a,ﬁ) :g(rv ﬁ)g(ﬁva) (75)

where g(r, f) = %Hé”(ﬁr) is the Green’s function of the 2D Helmholtz equation and §(f, a) is the Fourier
transform of the density d(1 — p) (p = r/a)

a) = /5(1 — ple @’y = 2na*Jy(Pa) (76)

Corresponding relations hold in the 2D- and 3D space when the source density function has spherical
symmetry (e.g. Michelitsch et al., 2002, Eq. (A.22); Michelitsch et al., 2003a, Eq (4.16)). In accordance with
(67) we find for both expressions the same imaginary part, namely (ReH (D =J)

Ima(r,a, B) = - Jo(Pa)o(r) (77)

which is symmetric with respect to r < a as a consequence of Ivory’s theorem. Using expression (55) the
dynamic potentials of heterogeneous fiber sources of the form p, = f(p*)©(1 — p) with elliptical cross-

1 For a discussion of the Ivory’s theorem, see e.g. Routh (1982).
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sections can be generated via integral (40). For a homogeneous continuous fiber of circular cross-section
(p, = O(a — r)) evaluation of (40) in the frequency domain yields for the internal space (r < a)

gl ) = 8" ) = 5 | 5 o () = 1 (78)
and for the external space (r > a)
g0, ) = (., ) = S 1y () (Ba) (19)

where H(V(s) denotes the Hankel- and J,(s) the Bessel functions. Taking into account (20) we have
h(r,a,B) = —g(r,a,p)/ (cﬁ)z. Expressions (78) and (79) coincide with those obtained by Michelitsch et al.
(2002, 2003a). Moreover, we verify that (73), (74) and (78), (79) are related by

Wr,a ) = a - g(r,a,) (50)
reflecting the fact that (a3l @(a —r) = 6(1 — p), p = r/a). Eqgs. (78) and (79) are solutions of

(A+B)g(r.a,B) +O@a—r) =0 (81)
which is transferred by application of the operator a - into (ai-g(r,a, ) = @(r,a, f))

A4+ p)D(r,a,p)+6(1—p)=0 (82)

In the following sections a numerical method based on Gauss quadrature is applied being useful for
inclusions with arbitrary shapes.

5. Numerical evaluation for fiber inclusion with arbitrary cross-section

In this section we derive a convenient representation for numerical evaluations of the retarded potentials
G| and Gy defined in (18) and (22), respectively. We mainly focus on numerical evaluation of fiber in-
clusions with arbitrary cross-sections. '> The numerical method we propose is based on Gauss quadrature
and applicable in the same way for both the space—time- and the space—frequency domain. In order to study
the effect of different inclusion shapes we focus on fibers with unit density p, = @,(r). The method is also
useful for inhomogeneous densities p,(r) = O,(r)f(r) in the 2D and 3D space (Wang et al., 2003). We
specify the boundary of the 2D source region S as the curve in (x, y)-plane fulfilling F(x,y) = F(r) = 0.

The solutions of Egs. (19), (20), (23) and (25) in the space-time representation have the form

g(r.0) = / G(r— v 0p () (1=1,2,3) (83)
hi(r, 1) = /S B — ), Dp.(E)F (i=1,2) (84)
gi(r) = / gyl — o, ()& (85)

where g, hi, g4 can be found in (37).

12 There will be only slight restrictions to the nature of the boundary curve (Egs. (86) and (87)).
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Let s =r —r, thus the boundary of the inclusion S in the new coordinate system is characterized by
F(s+r)=0. Let us introduce a parameterization of the boundary of the fiber § which can be written in
polar coordinates

S = rsés(e) (86)
with &(0) = (cos 0,sin 0) and
re=P(0,r), 0 € [o(r), f(r)] (87)

We should note that we confine here on such ‘regular’ cases where each spacepoint on the boundary is
characterized by a unique pair (ry, 8), that is we assume r, is a unique function of 6. 13

In (87) we have to distinguish the internal space (©,(r) = 1) and the external space (O,(r) =0), re-
spectively. If spacepoint r is located outside of S then in general [a(r), 5(r)] € [0, 27] are functions of r where
two branches P,(0,r), P;(0,r) occur in (87) parameterizing the upper and lower boundary curves of S. If the
spacepoint r is located inside S only one branch r; = P,(0,r) exists where P;(0,r) =0 thus « =0, f = 2n in
(87). Evaluating integrals (83)—(85) by using (86) and (87) yields (y = 0)

/dg/ r@c’_“') = /d@/mdrs
”:2 Hy c t2
:/ dod,(0,r,1) (88)
I fu cit i 72
h,-(l‘,t)zﬂ/ dg/P drslt1n<7+\/r2 —1>—\/t2_?
o )y s s i
1 B Hiy ) 242 2
z—@(cit—P)/ dH/ dn[tln (C—”+\/C'2’ —1) —\/zz—r—é]n / d0T:(0,x,1)  (89)
2n o Hy Ts Ty &
1 P P21 1,
"0 drq ring) = [ do Lo P In(R) — 5 PP In(P)

/ dow(0,r,1) (90)

o

O(cit — ry)ry

]

where

Ci _ 22 g2 _ 202 172
@;(0,r,1) = Zn@(c,t P)[\/c,-t Hj \/c,.t H,.u}

1 2.0 2 cit
— . 2H2)\/ 22 — H2 H2 In( 2
127TC,' (Cl r+ lu) + t I—]m

Y:(0,r,8) = Oc;t — P){

“‘I\)
—
S—
[

(91)
1 20 ) 1 cit
- |- 2+ 2H?) /22 — H +—HtIn -
[ lznci(cl + zl) o ll+47’C il (I_Ill+ i21 )]}
[P Pl 1,
qj(07l‘)—5|:4 4 +2Pul (Pu)_EPI ln(P[):l

13 Cases of ambiguous r, may occur when the boundary contains coves. Such irregular cases are not considered here.
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where P(r) = ming[P;(0,r)], and H;(0,r) = min[c;t, P,(0,r)], H,(0,r) = min[c;t, P,(0,r)]. If we define the
region Q; = {(ry, 0)|rs < cit, 0 € [0,2n]}, E = ;N S, then H;; and H,, are the boundary of Z. The boundary
of a region is assumed to be continuous in the variable 0. Then H;;, H,,, @;, T;, ¥ are also continuous
functions of 6. In order to represent integrals (88)—(90) in series form useful for numerics, we use the Gauss—
Chebyshev quadrature formula (e.g. Press et al., 1992). The abscissa and weights for domain [o, ] are

ﬂ—acos<nk—n/2>+fx+ﬁ

S =

zﬂ—oc . nliv— /2 i ©2)
We =T sm(T) (k=1,2,3,...,N)
Thus, for a function v(0) € Clo, ] we have
B N
/a o(0)d0 = Jim kz;wku(sk) (93)

Eq. (93) can be proofed by the theorem of Davis and Rabinowitz (1984). Therefore, (88) and (90) can be
replaced by

B N
gi(r, 1) :/ doe;(0,r,1) :Alfim Zwktbi(sk,r, t) (94)
x =
B
:/ dor;(0,r,t) = hm ZwkT Sk, T, 1) (95)
ga(r) = dG‘P = lim Zwk (s, T (96)

o

With results (94)—(96) we can write for the dynamic potentials Gy and Gy of Egs. (18) and (22) in the space—
time domain

1 1
Gl(l', l) = C—660g2(r7 l) + ;V ® V{hl(r, t) — /’lz(l’7 I)}

N—oo

S 1 1
= lim lek |:C—660¢2(Sk,l', t) + ;V & V{Tl (Sk,l'7 t) — Tz(Sk, r, t)} (97)

and

1
GH(I‘, t) =e3®e; Tg3(r,t) + (63 ®est+es® 63) =
44 C44’711

5 g (e.0)+ ig4<r>6<r>]

4l O

g3(l', t)

+es®ey

N
. 1
= lim E wk{e3 (9 836—¢3(Sk,l', l) + (e3 XRes+e® e3) = (153<Sk,l',l)
=1 44

N—oo Caanyy

+ e X ey

Cj:n“ Dy (s, 1, 1) + ﬂiu P (sk, )6(t)] } (98)
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With (97) and (98) we have determined the retarded quasi-plane potentials (15) for a homogeneous spatial
density p, = O,(r) for fiber inclusions with arbitrary fiber cross-sections.

6. Dynamic fields of a fiber inclusion with arbitrary cross-section

In the last section we have represented the dynamic electroelastic potentials due to a dynamically
transforming inclusion of arbitrary shape with density 6(¢)@(r) in series form. In this section we use this
result to solve the inclusion problem, i.e. we determine the induced generalized displacement field % for the
quasi-plane transversely isotropic medium. We assume that the inclusion undergoes a uniform eigenstrain
€* and eigenelectric field E* of the form (5). The inclusion has the same electroelastic moduli C, e, n and
mass density p as the piezoelectric transversely isotropic matrix material. Taking into account (12) we can
write the generalized displacements in the form (N — o)

0= S 10l () S A0 ) o) = Talowr )

uzzifjwm[z<v>¢z<sm,r,r>+%( (V) g V) 2 ) (sm0) = Tl

Cos = ox0y
- (99)
N A
N

where functions @;, 7;, ¥ are defined in (91). With (99) we have represented the dynamical generalized
displacement fields due to a dynamically transforming fiber inclusion with arbitrary cross-section according
to the eigenfields (5) in a form which is useful for numerical evaluation.

7. Numerical examples and visualization

We devote this section to some special cases to confirm the numerical efficiency of the series formulae of
(94)—(96).

7.1. Homogeneous fiber inclusions with circular cross-sections

The dynamic potential of a continuous fiber inclusion with circular cross-section (radius a) of unit
density p,(r) = @(a — r) in the space—frequency domain is given by Eqgs. (78) and (79) and fulfills
(4+B)g(r,a,p) +O(a—r) =0 (100)

For the frequency representation of 4 defined by (20) we have

h(raaaﬁ):_c%ﬁzg(rvchﬁ) (101)

In order to determine the corresponding retarded potentials g, # numerically in the time domain, we use
numerical Fourier (Laplace) transformation (Wang, 2001; Wang et al., 2002). To this end we notice that the
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frequency domain potentials above are based on the definition of Fourier transform (for example, a
function f(¢)) of

fo)= [ rwera
T (102)
10 =55 [ Fl@)edo

The potentials g, 4 in time space domain with infinitesimal damping ¢ — 0+ become (Wang, 2001; Wang
et al., 2002)

(e+Tij2"y M N

. € . )

g(ryat) = Mlv}lllxcw Z g(r’a’1€_~_ > )euk/2
j—

(103)

(e+7i/2my M k—7 _

. e ) :

h(n % t) - n]l\}l;r}oc CW Z h <}”, a,le + on ) e*”k/z
k=M

where M is related to the frequency range of g(r,a, f8), h(r,a, ) and n is related to the time range within
which the inverse result has good precision. g, defined by (85) is available in closed form (Michelitsch et al.,
2002)

gu(r,a) = %@(a —r)(2a*In(a) — a* +1?) +%@(r —a)a*In(r) (104)

Let us now consider the material PZT-5H with the electroelastic moduli
p=7500 kgm™ Cf =127 GPa, C%, =23.0GPa
CE =235GPa, e5=170Cm™>?, 7, =15x10%Fm™'
Thus, in terms of (21) and (24), we have

ci ~4115ms™!, ¢~ 1770 ms™!, ¢~ 2374 ms™!

(105)

Fig. 1 shows the propagation of the retarded potential g (r, a, ) of a circular source 6(¢)©®(a — r). Solid
lines represent the numerically generated results of (94) by using (B.4), (B.5) and (B.8) where
ay = a; =a=0.1m, N =100. The hollow markers represent the results generated by the numerical Fourier
transformation (103) by using the exact results for g|(r,a, ) of Egs. (78) and (79) for a fiber with radius
a=0.1m, (M =2800,n=2,e=0.002). Fig. 1 indicates that the applied numerical method operates with
high accuracy. In the internal space g (r, a, t) shows linear behavior of g, (r,a,t) = citfort <ty = (a —r)/c
which is in accordance with the exact result (below Eq. (106)). '* Moreover, it can be seen in Fig. 1 that g, is
in the outside space r > a a circular (cylindrical) wave package propagating with wave speed ¢y, arriving at
a circle  in the external space when 7 = (» — a)/c is equal the runtime from the circle r to the closest source
point being located on the boundary of the fiber. A speciality of the 2D medium is that once the wave
package has reached a certain circle r, the amplitude will remain non-zero V¢ > (r — a)/c,. This non-zero
tail of a wave package uniformly emitted due to a density ©@(a — r)o(¢) is a consequence of the retarded 2D

Green’s function g = 1/0(t — R/c)/(2m\/ 2 — (R/c)?) non-vanishing V¢ > R/c. This is in contrast to the 3D
case where the amplitude is vanishing for times greater than the runtime from the spacepoint to the fur-
thermost source point. '°

14 This remarkable property also occurs in the 3D case.
15 This is a consequence of the 3D retarded Green’s function g;(R, £) = (¢ — R/c)/(4nR) which contributes only for R = ct. For an
extensive discussion of these runtime effects and a comparison of the 2D and 3D case we refer to our recent paper Wang et al. (2003).
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Fig. 1. Time evolution of the retarded potential g,(r, a,t) of a solid circular source. Solid lines represent the results of (94), by using
(B.4) and (B.5) with a; = @, = a = 0.1 m, N = 100. Hollow markers represent the result generated by using the closed-form results of
(78) and (79) in (103) (a = 0.1 m, M =800, n =2, e = 0.002).

Fig. 2 represents the 3D plot of the propagation of the same retarded potential g;(r, a, ¢) as in Fig. 1. The
plot shows the linear behavior in the internal space as well as the propagation of the wave front. The non-
zero tail for increasing time ¢ is also indicated.

Fig. 3 shows the propagation of the potential %, (r, a, t) of the same circular inclusion as in Figs. 1 and 2.
Solid lines represent the results of (95) using (B.4), (B.5) and (B.8) with a; =a, =a =0.1 m, N = 100.
Hollow markers represent the same potential generated by (103) with (M = 800,n = 2,¢ = 1) by integrating
the exact dynamic potential (Egs. (78) and (79)).

Fig. 4 shows the Newtonian potential g4(r,a) of the circular inclusion of Fig. 3 (¢ = 0.1 m). Solid lines
represent the results generated by (96) using (B.4) and (B.5) with N = 100. Hollow markers represent the
same potential generated by the exact formula (104).

These examples show high accuracy agreement between the numerical time domain Fourier integrals of
the close form solutions (78) and (79) and the numerically generated results based on formulae (94) and
(95). Furthermore, the numerical evaluation of (96) approximates the exact Newtonian potential (104) with
high accuracy.

7.2. Homogeneous elliptical fiber inclusion

Consider the maximum value of potential g;. It is reasonable that the maximum should appear when the
spacepoint is located inside the source region with o = 0, f8 =2n and P,(0,r) =0, i.e., H; = 0. Now, let us
consider the function @; of (91). Thus, we have max(®;) = Cz—nt as function of t when H;, = ¢;t, i.e., the circle
ry = ¢;t is still inside the source region or ¢;# < P,. Thus we find the remarkable properties

2n C2

b 24
ar 1) = Oto(r) — ) / 0,05, = [0S = 1[0, 00(r)] (106)

0 2n !
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Fig. 2. 3D plot of the propagation of the retarded potential g;(r,a,t) of Fig. 1 generated by Eqgs. (94) with a = a; =a, = 0.1 m,
N = 100.

h, (m%s)

r(m)

2
0 t(s)

Fig. 3. Propagation of the potential /,(r,a,t) of the same inclusion as in Figs. 1 and 2. Solid lines represent the results of (95) with
a; =a; =a=0.1 m, N =100. Hollow markers represent the results generated by (103) (M = 800,n = 2,¢ = 1) together with (101) by
using the exact solutions for g(r,a, ) of Egs. (78) and (79).
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Fig. 4. Newtonian potential g4(r,a) of a homogeneous circular source ®(a — r). Solid lines represent the numerical result of (96)
(by using (B.4), (B.5) and (B.8)) with a; = a, = a = 0.1 m, N = 100. Hollow markers represent the exact results given by (104) with
a=0.1m.

28]

§
hi(x, 1) = O(ty(r) —t)/ dori(0,x,t) = dO0--=_c, t€[0,4(r)] (107)
, , 12m 6

ming [P, (r,
c

where #(r) = 91 Egs. (106) and (107) remain also true for fiber inclusions with arbitrary cross-
sections and in the 3D case of an inclusion of arbitrary shape. In the time range 0 < ¢ < #(r) waves arrive at
r emitted from circles with radii ¢;# around r being completely inside the inclusion. Since in this time range
no waves arrive at r which are emitted from boundary points, g;, 4; are independent on a;. This effect takes
place uniformly for all r inside the inclusion, thus also the r-dependence is absent for 0 < ¢ < #(r). The
analogue observation is also true for 2D homogeneous inclusions with arbitrary boundaries.

In a sense this dynamical effect which also holds in the 3D case, can be regarded as the dynamical
counterpart to the static Eshelby theorem (according to which the strains inside an elliptical inclusion are of
the same polynomial order than the eigenstrains). ' Moreover, for any internal spacepoint the maximum
value of g; is taken when ¢ = #y(r) and therefore the absolute maximum value of g; is taken at the fur-
thermost internal spacepoint from the boundary of the inclusion. This is true for 2D inclusions with arbi-

trary boundaries. Since max,(o(r)) = max, 2220 e get

Ci

mrztix[g,-(r, N =c¢ m}ax[m{}in(Pu (r,0))]

For the elliptical inclusion, we get

max|g;(r,?)] = ¢;min(ay, ay)
rt

where a;, a, are semi-axes of the ellipse.

' The 2D and 3D cases are discussed in our recent paper, Wang et al. (2003).
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Fig. 5. Time evolution of g (r, ) at the origin r = (0,0) of an ellipsoidal source region (density J(¢)©(1 — p)) with semi-axis a; = 0.1 m
generated by (94) for varying axis a; = 0.01, 0.02, 0.03, 0.04 m, N = 400.

500 x x
a0l ~— A N=400,a,=0.1m
400}
350}

300

g, (m?s™)

2501 \
200r N a,=0.3 m ‘~
~ 2 !

150+ - A
a270.2 m ~o

100+ a,=0.1m S~

0 1
0 0.5 t(s) 1 j.S

Fig. 6. Time evolution of potential g(r,?) in the origin r = (0,0) of an ellipsoidal source (density o(¢)@(1 — p)) with a¢; =0.1 m
((94) with (B.4) and (B.5)) and varying a, = 0.1, 0.2, 0.3, 0.4 m, and N = 400.

Figs. 5 and 6 show the time evolution of potential g(r,#) in the origin r = 0 of a fiber inclusion for
elliptical cross-sectimzl generated by ((94) together with (B.4), (B.5) and (B.8)) (density
()01 —p)p* = ;—i + %5, respectively). In Fig. 5 the semi-axis a; = 0.1 m is fixed and semi-axis a; = 0.01,

1 2



—

3
———
==

\

——
—

=

.

=—

e

1400
1200 a, 0.3 m, a, 1
1000
‘_‘A
T, 800
A \
E 600 \
—
(@]
400 \ \
200 \
15 |
1
0.5

-

=

=
/

/
—————
=————

”;/;/;//’/;

.

\ |
4

\\\

=
=——

=——

——————
=

=

=8
SR
-1 ¢
I~ i
I E
= o ‘
RN
-
=
—
o © =\
—
g2 /
' e llie—— =

=

= —




J. Wang et al. | International Journal of Solids and Structures 40 (2003 ) 6307-6333

x10°

25«
a;:0.3 m, a2:1.0m

= <> <OTS
SIS S eSS S OSOUSOS SIS OISO OISO
S e S S S S S S S S S S SIS OSS

S S S S S S S S S S S OSSOSO
=>< e
S S S S S S S S S S S s S S S S S SsasoS
““““’-““"‘.-“"“‘-“‘-““-“““"-“-““".“."‘ N

e S e e e e e e

S S<s—= e

B e S S e S oSS oSO S oSS

=
==

SSSssosss
S CoS e o S OSSO
S
SSSSososSos
S

t(s)

Fig. 9. 3D plot of the propagation of potential /,(r,7) (Egs. (95) with (B.4), (B.5) and (B.8)) of the same source density as in Figs. 7

and 8.
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Fig. 10. 3D plot of the Newtonian potential g4(r) (Egs. (96), with (B.4), (B.5) and (B.8)) with ¢; = 0.3 m, a, = 1.0 m of the same

ellipsoidal inclusion as Figs. 8 and 9 with density ©(1 — p) in which N = 400.
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0.02, 0.03, 0.04 m is varied. In Fig. 6 a; = 0.1 m is fixed and @, = 0.1, 0.2, 0.3, 0.4 m is variable. These Figs.
indicate that for 7 < ¢y = min(ay,a,)/c the retarded potential shows linear behavior independent on the
semi-axes ¢; as indicated by the exact Eq. (106). For both cases in the linear range, the slope is equal to ¢7.
Moreover, g; takes its maximum value g,(0,4) = ¢; min(a;, a,) in the center of the ellipse (» = 0).

Figs. 7 and 8 show 3D plots of the propagation of the retarded potential g (r, ¢) for an elliptical inclusion
(source density 6(¢1)@(1 — p), a; = 0.3 m, a; = 1.0 m) in x- and y-directions, respectively. The plots are
generated by employing Egs. (94) together with (B.4), (B.5) and (B.8).

Fig. 9 shows the 3D plot of the propagation in (x,0)-direction of the potential 4, (r,¢) for the same
elliptical inclusion as in Figs. 7 and 8 where Egs. (95) with (B.4), (B.5) and (B.8) have been used.

Fig. 10 shows the 3D plot of a Newtonian potential g4(r) generated by Eq. (96) using (B.4), (B.5) and
(B.8) of the same elliptical inclusion as in Figs. 7-9.

The above examples demonstrate the interplay of runtime and superposition effects. Moreover, all of
these examples show high precision agreement of the purely numerically generated results and the results
where closed-form solutions are involved.

8. Conclusions

In the present paper the dynamic electroelastic fields (displacements and electric potential) in a trans-
versely isotropic medium with dynamically transforming continuous fiber inclusion are studied. The dy-
namic fields are expressed in terms of three types of scalar functions, namely the retarded potential g
defined by (19), the related potential ~ of (20) and the Newtonian potential g4 defined by (25). The latter
does not affect the wave propagation.

By means of Fourier transformation compact integral formulae are derived for the dynamic and re-
tarded potentials of continuous fiber inclusions with elliptical cross-sections and continuous fiber tubes
(Eqgs. (47)ff.). For special cases (circular fiber inclusions and fiber tubes) known closed-form expressions
(Michelitsch et al., 2002, 2003a) are reproduced.

For fiber inclusions with arbitrary cross-sections a numerical procedure is applied based on Gauss
quadrature technique. The numerically evaluated dynamic and retarded potentials determine completely
the generalized displacements (displacements and electric potential). The numerical solution is obtained in
terms of simple scalar functions (expressions (91), (94)—(96), respectively). The efficiency and high accuracy
of the numerical procedure is confirmed in Section 7 by means of a circular inclusion. Characteristic
propagation and runtime effects are found analytically and numerically. For the retarded potential g of a
homogeneous density 6(¢)O,(r) they can be summarized as follows: (i) For times being smaller than the
runtime from the spacepoint r to the closest boundary point the behavior in the internal space is governed
by a uniform linear increase with time being independent on r and the geometric characteristics (shape) of
the source region. (ii) g takes its maximum value in the furthermost internal spacepoint from the boundary.
The maximum occurs at the time being the runtime from this spacepoint to the closest boundary point (e.g.
for a circular inclusion in its center). (iii) For an external spacepoint g is non-vanishing only for times
greater than the runtime to the closest boundary point. (i)—(iii) are also true in the corresponding 3D case as
recently found by Wang et al. (2003). (iv) Unlike in the 3D case, in the 2D case once the wave has arrived,
g > 0 remains non-vanishing for all times greater than this runtime. (i)—(iv) are true for continuous fiber
inclusions of arbitrary cross-sections with source density 0(¢)@,(r). (iii) and (iv) remain true even for in-
homogeneous densities d(7)@,(r)p,(r) whereas (i) and (ii) have to be modified. !’

'7 A discussion of inhomogeneous densities of the 3D case can be found in our recent paper, Wang et al. (2003).
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The present results and approaches are useful for the solution of a wide range of dynamical engineering
problems in the 2D piezoelectric space (corresponding to a 3D transversely isotropic medium with fiber
inclusions). They can be applied in self consistent models to determine the effective dynamic material
properties and are useful for the description of wave propagation phenomena in piezoelectric fiber com-
posites.
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Appendix A
In this appendix we give a proof for Eq. (45). To that end we consider (k = kﬁ)
I= [ f(k)dek) = [ flk)k- -kdQ(k) (A.1)
k|=1 k|=1

by using Gauss’ theorem this integral can be rewritten as

I= | [flk)dQk)= [ Vi(kf(k))dk (A2)

K2<1 k|=1

Now we put k;, =% = K?a— (32, K? = 1). The region k2 = K2, f—j < 1 is characterized by K(K) <s(K) =

a;

1 / /D I:—; Thus / becomes
1

dQ(K W d (oK d A3
[ =— — | K K= K .
aay JiK=1 (K) /o dK s a; (A-3)

which yields after the K-integration (45)

R Ry (&(f())ﬁ(f()dg(f() (A4)

aa a;

Appendix B

We consider an elliptical fiber inclusion with boundary shape characterized by

xrz y/2
Fry=—=4=—-1=0 B.1
)=+ (B.1)

With spacepoint r = (x,y) and s = (x,, ) =1t —r, we have ' =s + r thus (B.1) becomes

2 2
Fls+r) =& 007 (B.2)
a a

By putting x, = r,cos(6), y, = rysin(f), we can express the boundary of the region F(s+r) in polar
coordinates as



6332 J. Wang et al. | International Journal of Solids and Structures 40 (2003) 6307-6333

_ —ajysin(0) — azxcos(0) £ /O
’ a3 sin’(0) + a2 cos?(0)

(B.3)

where O = a2a2[—(ycos(0) — xsin(0))* + a? sin*(0) + a3 cos*(0)]. Notice that ¢ > 0, therefore

sm (0)+a§ cos?(0)
—atysin(0) — a2x cos(0) + /O
a3 sin*(0) + a2 cos?(0)

P, = (B.4)

For the internal space we have o = 0, § = 2n for the lower and upper limits of the angle and P, = 0 for
the lower limit of the radius »;. On the other hand, if the spacepoint is located outside the source region, the
lower limit of radius coordinate is

—alysin(0) — ajxcos(0) — /O

. B.S5
! a3 sin*(0) + a2 cos?(0) .
To obtain the lower and upper angle limits o, 5, we put Q = 0 which leads to
an(0) = [ ZYEVea + e’ +apy? (B.6)
[12 — x2
1
thus
7 = arctan —y \/_aia% +2a%x2 + a3y
a; —x

(B.7)

y, = arctan | —2— \/—aia% + a3x? + aly?

— 32
aj —x

where —n/2 <7y, 7, < 7/2. In view of the symmetry of the inclusion we have to consider only spacepoints
which satisfy x > 0, y > 0 being located outside the inclusion. For this case the lower and upper limits of
angle coordinate satisfy n/2 < o < 3n/2, © < < 2=, which together with (B.7) leads to

a=7+7y
1. ) (B.8)
ﬁ:n—QM%Mwa4%Mhﬂ+w
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