
International Journal of Solids and Structures 40 (2003) 6307–6333

www.elsevier.com/locate/ijsolstr
Dynamic fiber inclusions with elliptical and arbitrary
cross-sections and related retarded potentials
in a quasi-plane piezoelectric medium

Jizeng Wang, Thomas M. Michelitsch *, Huajian Gao

Max-Planck Institute for Metals Research, Department of Theory of Mesoscopic Phenomena,

Heisenbergstrasse 3, D-70569 Stuttgart, Germany

Received 26 March 2003; received in revised form 24 June 2003
Abstract

A piezoelectric medium of transversely isotropic symmetry with continuous fiber inclusion parallel to the axis of

symmetry is considered. The problem is equivalent to a two-dimensional �quasi-plane� piezoelectric medium containing a
2D inclusion. The inclusion is assumed to undergo a spatially uniform dðtÞ-type time domain transformation. The
continuous fiber has elliptical, circular and arbitrary cross-sections. The solutions of the inclusion problem is expressed

by scalar potentials. In the time domain two of these functions correspond to the retarded potential integrals of the

inclusion. Their frequency domain representation which we shall call the �dynamic potentials of the inclusion� are also
considered. Integral formulae are derived for continuous fiber inclusions with elliptical cross-sections. Known closed-

form solutions are reproduced for circular fibers. For fibers with arbitrary cross-sections a numerical method based

on Gauss quadrature is applied. High accuracy and efficiency of the numerical method is confirmed. Characteristic

superposition and runtime effects for the inclusions are found.

� 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

In smart/intelligent structures the knowledge of the dynamic characteristics of inhomogeneous materials

are of high interest in supersonics, microwave technologies and in non-destructive evaluation (NDE) (e.g.
Pao, 1978). Despite this high importance of the dynamical modelling there is only few work done as

compared to the modelling of static mechanical properties. Talbot and Willis (1983) have analyzed the wave

propagation effects caused by randomness of the microstructure. They gave estimates of dynamic material

characteristics such as dispersion and attenuation.
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Of special importance in the mechanics of materials is the solution of inclusion problems for inclusion

geometries of interest. In statics Eshelby determined in his classical 1957 paper the strain inside an elliptical

inclusion which undergoes uniform eigenstrain for an isotropic medium. By utilizing Dyson�s theorem
Rahman (2002) solved the inclusion problem of an elliptical inclusion with polynomial eigenstrain in closed
compact form in terms of �potential integrals� which are related to elliptic integrals.
The dynamical fields are of interest in the frequency and time domain. In the quasi-plane transversely

isotropic medium the frequency domain solutions are determined by solutions of inhomogeneous Helm-

holtz equations. Frequency domain solutions we shall call �dynamic potentials�. Their time domain repre-
sentations are the retarded potentials being the causal solutions of the corresponding inhomogeneous wave

equation (e.g. Jackson, 1999).

There are only a few cases where closed-form solutions are available in the dynamic framework, namely

for spherical inclusions (Mikata and Nemat-Nasser, 1990; Michelitsch et al., 2003a; Wang et al., 2003), for
circular (cylindrical) inclusions (Cheng and Batra, 1999; Michelitsch et al., 2003a) and for the quasi-plane

piezoelectric medium with circular inclusion (Michelitsch et al., 2002). In the static limit of vanishing an-

gular frequency, the dynamic potentials are transferred into the corresponding Newtonian potentials. In the

case of inhomogeneous elliptical source regions it has been shown explicitly (Michelitsch et al., 2003b) that

classical results of Ferrers (1877) and Dyson (1891) are reproduced.

The present study is devoted to the quasi-plane medium with inclusions being of special engineering

interest. This material system is equivalent to a three-dimensional medium containing continuous fibers.

The fiber cross-section represents the two-dimensional ‘‘inclusion’’ in the quasi-plane medium.
This paper is organized as follows: In Section 2 we give a formulation of the dynamic inclusion problem

in the 2D piezoelectric quasi-plane medium. The dynamic electroelastic fields (displacements and electric

potential) are determined in terms of three types of scalar potentials. The time domain solution is essentially

determined by two types of scalar retarded potentials. These potentials are convolutions of retarded Green�s
functions which are considered briefly in Section 3. In Section 4 we derive integral formulae for the retarded

potentials for 2D source regions with elliptical shapes (corresponding to fiber inclusions with elliptical

cross-sections) and of 2D elliptical rings (elliptical fiber tubes). Both the time domain and the frequency

domain are considered. For circular source regions closed-form results are obtained being in agreement
with those derived by Michelitsch et al. (2002, 2003a). Section 5 is devoted to the numerical evaluation

based on Gauss quadrature 1 of the retarded and dynamic potentials of source regions with arbitrary

shapes and the electroelastic dynamic fields are given in Section 6. The efficiency of the numerical method is

demonstrated in Section 7 where the retarded potentials of a circular inclusion are shown to coincide with

high accuracy by using both the pure numerical method and the closed-form results.
2. Dynamic inclusion problem

We consider an infinite two-dimensional �quasi-plane� piezoelectric medium with transversely isotropic
symmetry. All field quantities depend only on the plane space vector r ¼ ðx; yÞ in the plane of transverse
isotropy. We call this medium �quasi-plane� since the displacement uðrÞ ¼ ðu1; u2; u3Þ also has an anti-plane
z-component as in a 3D medium with ui ¼ uiðx; yÞ and o

oz ð�Þ ¼ 0. It is convenient to introduce a generalized
displacement field U ¼ ðu1; u2; u3; u4Þ where u4 ¼ U indicates the electric potential.
The moduli of this medium include the elastic constants C ¼ fC11;C66;C44;C13g, the piezoelectric con-

stants e ¼ fe15; e31g, and the dielectric constant g ¼ fg11g. The remaining moduli C33, e33, g33 of the 3D
transversely isotropic medium are absent due to o

oz ð�Þ ¼ 0. The linear constitutive relations are given by
1 For a detailed discussion we refer to our recent paper, Wang et al. (2003).
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where r denotes the stress tensor and D the electric displacement field. The equations of motion and the
charge conservation law can be compactly written as (Michelitsch et al., 2002)
TðrÞ
�

� q
o2

ot2
J

�
U þ F ¼ 0 ð2Þ
where r ¼ e1
o
oxþ e2

o
oy denotes the plane gradient operator and J ¼ e1 
 e1 þ e2 
 e2 þ e3 
 e3 is the three-

dimensional unity tensor.F ¼ ðf1; f2; f3; f4Þ denotes the generalized force density with the density of body
forces fi ði ¼ 1; 2; 3Þ, the density of free electric charges f4 ¼ �qe and the mass density q. The time coor-
dinate is denoted by t. TðrÞ is a 4 · 4 matrix second order differential operator and has the form
TðrÞ ¼ TIðrÞ þ TIIðrÞ ð3Þ

where
TIðrÞ ¼ C11r
rþ C66ðhD �r
rÞ
TIIðrÞ ¼ C44e3f 
 e3 þ e15ðe3 
 e4 þ e4 
 e3Þ � g11e4 
 e4gD

ð4Þ
and D ¼ o2

ox2 þ o2

oy2 is the plane Laplace operator. The feig ði ¼ 1; 2; 3; 4Þ are a Cartesian basis consisting of
four unit vectors with U ¼ uiei and h ¼ e1 
 e1 þ e2 
 e2 denotes the plane unity tensor. As we observe in
(4),TðrÞ consists of a pure elastic partTI acting on u1 and u2 in the isotropy plane and a second partTII

which describes the piezoelectric coupling of u3 and u4.
Now we consider the quasi-plane medium with 2D inclusion. We assume that the inclusion undergoes

eigenstrain �� and eigenelectric field E�. The inclusion has the same electroelastic moduli C , e, g and mass
density q as the piezoelectric transversely isotropic matrix material. The eigenfields are
��ðr; tÞ ¼ qsðrÞdðtÞ�0; E�ðr; tÞ ¼ qsðrÞdðtÞE0 ð5Þ

where �0 and E0 are constant. dðtÞ denotes Dirac�s delta function and dðtÞqsðrÞ ¼ dðtÞf ðrÞHsðrÞ the source
density distribution 2 where HsðrÞ is the characteristic function of the inclusion S. 3 Assuming the absence
of external body forces, the field equations for the general displacement field U in the medium with in-

clusion then take the form of (2)
TðrÞ
�

� q
o2

ot2
J

�
U þ F� ¼ 0 ð6Þ
e approach to be derived here allows arbitrary scalar functions qs with
R

qsðrÞd2r < 1.
sðrÞ ¼ 1, r 2 S and HsðrÞ ¼ 0, r 62 S.
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The field U ¼ ðuiÞ ði ¼ 1; 2; 3; 4Þ can be expressed in terms of the Green�s function bGG, namely

uiðr; tÞ ¼

Z bGGijðr� r0; tÞf �
j ðr0Þd

2r0 ð9Þ
It is convenient to introduce a 4 · 4 potential G according to
Gðr; tÞ ¼
Z bGGðr� r0; tÞqsðrÞd2r0 ð10Þ
This potential G then obeys
TðrÞ
�

� q
o2

ot2
J

�
Gðr; tÞ þ 1qsðrÞdðtÞ ¼ 0 ð11Þ
Thus the generalized displacement field of Eq. (9) becomes
ukðr; tÞ ¼ �ff �
i ðrÞGkiðr; tÞ ð12Þ
where �ff �
i ðrÞ ði ¼ 1; 2; 3; 4Þ is the first order differential operator defined by
�ff �
i ðrÞ ¼ �ðCijrs�0rs � ekijE0kÞoj ði ¼ 1; 2; 3Þ
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0
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ð13Þ
or
�ff �
1 ðrÞ ¼ � C11�011

o

ox

�
þ ðC11 � 2C66Þ�022

o

ox
þ 2C66�012

o

oy

�
�ff �
2 ðrÞ ¼ � 2C66�012

o

ox

�
þ C11�022

o

oy
þ ðC11 � 2C66Þ�011

o

oy

�
�ff �
3 ðrÞ ¼ � 2C44 �013

o

ox

��
þ �023

o

oy

�
� e15 E01

o

ox

�
þ E02

o

oy

��
�ff �
4 ðrÞ ¼ � 2e15 �013

o

ox

��
þ �023

o

oy

�
þ g11 E01

o

ox

�
þ E02

o

oy

��
ð14Þ



J. Wang et al. / International Journal of Solids and Structures 40 (2003) 6307–6333 6311
The components Gmn ¼ Gnm ðm; n ¼ 1; 2; 3; 4Þ of (10) have the following physical meaning:

GijðR; sÞ ði; j ¼ 1; 2; 3Þ is the elastic displacement in i-direction at spacepoint R and time s caused by the
force distribution qsðrÞdðtÞ acting in j-direction;
Gi4ðR; sÞ ði ¼ 1; 2; 3Þ is the elastic displacement in i-direction at spacepoint R and time s caused by the
electric charge distribution qsðrÞdðtÞ;
G4jðR; sÞ ðj ¼ 1; 2; 3Þ is the electric potential at spacepoint R and time s caused by the force distribution
qsðrÞdðtÞ acting in j-direction;
G44ðR; sÞ is the electric potential at spacepoint R and time s caused by the electric charge distribution
qsðrÞdðtÞ.

In view of the transversely isotropic symmetry of the operator TðrÞ of Eq. (4) G can be decomposed
into
4 An
G ¼ G I þ G II ð15Þ

where G I corresponds to the pure elastic part in the isotropy plane and G II indicates the piezoelectric part.

These parts fulfill the separate equations
TIðrÞ
�

� hq
o2

ot2

�
G I þ qsðrÞdðtÞh ¼ 0 ð16Þ

TIIðrÞ
�

� e3 
 e3q
o2

ot2

�
G II þ qsðrÞdðtÞðe3 
 e3 þ e4 
 e4Þ ¼ 0 ð17Þ
Eq. (16) describes the propagation of two acoustic waves in a purely elastic 2D isotropic medium. Eq.

(17) describes the wave propagation of one coupled electroacoustic axial plane shear wave which is

propagating in ðx; yÞ-plane. Its polarization is in the anti-plane 3-direction, i.e. perpendicular to the plane of
transverse isotropy. 4 G I is obtained as (Michelitsch et al., 2002)
G Iðr; tÞ ¼
1

C66
hg2ðr; tÞ þ

1

q
r
rfh1ðr; tÞ � h2ðr; tÞg ð18Þ
where gi is determined by ðc ¼ ciÞ
D

�
� 1

c2
o2

ot2

�
g þ qsðrÞdðtÞ ¼ 0 ð19Þ
and functions hi are defined
o2

ot2
hi ¼ gi ð20Þ
where
c1 ¼
ffiffiffiffiffiffiffi
C11
q

s
; c2 ¼

ffiffiffiffiffiffiffi
C66
q

s
ð21Þ
c1 and c2 indicate the wave speeds of the longitudinal and transversal polarized acoustic waves, respectively
both propagating in ðx; yÞ-plane.
extensive discussion can be found in Levin et al. (2002).
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G II can be derived in the same way and yields (Michelitsch et al., 2002)
G IIðr; tÞ ¼ e3 
 e3
1bCC44 g3ðr; tÞ þ ðe3 
 e4 þ e4 
 e3Þ

e15bCC44g11 g3ðr; tÞ
þ e4 
 e4

e215bCC44g211 g3ðr; tÞ
"

þ 1

g11
g4ðrÞdðtÞ

#
ð22Þ
g3 and g4 are solutions of the equations
D



� 1

c23

o2

ot2

�
g3 þ qsðrÞdðtÞ ¼ 0 ð23Þ

c3 ¼

ffiffiffiffiffiffiffiffibCC44
q

s
; bCC44 ¼ C44 þ

ðe15Þ2

g11
ð24Þ
g4 is the Newtonian potential defined by the static Poisson equation
�Dg4 þ qsðrÞ ¼ 0 ð25Þ

Eq. (22) describes an electroacoustic coupled shear wave propagating with velocity c3 in ðx; yÞ-plane with

anti-plane transverse polarization ûu3. The electroacoustic coupling is reflected by ûu4 ¼ e15
g11
ûu3. Eq. (22) rep-

resents the only electroacoustic (piezoelectric) coupled wave existing in the quasi-plane piezoelectric me-

dium of transversely isotropic symmetry.
With Eqs. (18) and (22), the problem of solving the field equations (11) is reduced to the determination of

only three types of scalar potential functions, namely the retarded potential function g defined by (19),
related function h of (20) and the Newtonian potential defined in (25).
In the subsequent sections we derive integral formulae for g and h for elliptical inclusions and propose a

numerical scheme useful for the evaluation for inclusions of arbitrary shapes.
3. Retarded Green’s functions

In this section we will give a brief introduction of the related retarded Green�s functions. Detailed
derivations can be found in the papers of Levin et al. (2002) and Michelitsch et al. (2002). We mainly focus

on the causal space–time representation. The defining field equation for the retarded Green�s function bGG is

defined by (11) when we put qsðrÞ ¼ d2ðrÞ. This retarded Green�s function is fully determined by the three
types of scalar Green�s functions, namely (Michelitsch et al., 2002)
D

"
� 1

c2
o

ot

�
þ �

�2#
ĝg þ d2ðrÞdðtÞ ¼ 0 ð26Þ
for the functions ĝg1;2;3 and
D

"
� 1

c2
o

ot

�
þ �

�2#
o

ot



þ �

�2
ĥhþ d2ðrÞdðtÞ ¼ 0 ð27Þ
for ĥh1;2, where ĝg ¼ o2

ot2 ĥh, and finally
�Dĝg4 þ d2ðrÞ ¼ 0 ð28Þ
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thus
5 H
ĝg4ðrÞ ¼
1

2p
ln r ð29Þ
where r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
.

In Eqs. (26) and (27) we introduced an infinitesimal positive damping constant � ! 0þ in order to get a
well defined problem leading to the retarded Green�s functions (e.g. Levin et al., 2002).
Let us note that ĥh can be expressed by ĝg by the convolution
ĥhðr; tÞ ¼
Z 1

�1
ĝgðr; t � sÞf̂f ðsÞds ð30Þ
where f̂f is the Green�s function defined by
o

ot



þ �

�2
f̂f ðtÞ ¼ dðtÞ ð31Þ
thus
f̂f ðtÞ ¼ tHðtÞe��t ð32Þ

where HðtÞ denotes the Heaviside step function. 5 The exponential factor e��t can be omitted for finite t, but
has to be taken into account when integrating this function to infinity.

The Green�s function ĝgðr; tÞ defined in Eq. (26) is given by (e.g. Levin et al., 2002)
ĝgðr; tÞ ¼ 1

2p

H t � r
c


 �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 � r

c


 �2q ð33Þ
Expression (33) describes the physical propagation of an outgoing singular circular plane wave with

propagation velocity c. The H-function ensures runtime causality, that is, the outgoing wave should reach a
circle with radius r ðr ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
Þ around the source point r0 ¼ 0 only when t ¼ r=c. For t < r=c when the

circular wave has not yet reached the circle with radius r, the Green�s function is vanishing.
By evaluating integral (30) we obtain for ĥh the expression (Levin et al., 2002)
ĥhðr; tÞ ¼
H t � r

c


 �
2p

t ln
ct
r

 (
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2t2

r2
� 1

r !
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 � r2

c2

r )
ð34Þ
With relations (33) and (34) the causal dynamic Green�s functions corresponding to (18) and (22) are
completely determined and obtained in explicit form as (Michelitsch et al., 2002)
bGG Iðr; tÞ ¼
1

C66
hĝg2ðr; tÞ þ

1

q
r
rfĥh1ðr; tÞ � ĥh2ðr; tÞg ð35Þ
and
bGG IIðr; tÞ ¼ e3 
 e3
1bCC44 ĝg3ðr; tÞ þ ðe3 
 e4 þ e4 
 e3Þ

e15bCC44g11 ĝg3ðr; tÞ
þ e4 
 e4

e215bCC44g211 ĝg3ðr; tÞ
"

þ 1

g11
ĝg4ðrÞdðtÞ

#
ð36Þ
ðsÞ ¼ 1 if s > 0 and HðsÞ ¼ 0 if s < 0.
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where
6 O
ĝgiðr; tÞ ¼
1

2p

H t � r
ci

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 � r

ci

� �2r ði ¼ 1; 2; 3Þ

ĥhiðr; tÞ ¼
H t � r

ci

� �
2p

t ln
cit
r

 (
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2i t2

r2
� 1

r !
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 � r2

c2i

s )
ði ¼ 1; 2Þ

ĝg4ðrÞ ¼
1

2p
ln r

ð37Þ
and the wave velocities ci are given in (21) and (24), respectively.
4. Retarded potential integrals for fibers and fiber tubes with elliptical cross-sections

In this section our goal is to derive potential integrals g and h defined in Eq. (19)ff. for a continuous fiber
and fiber tube with semi-axes a1, a2. The quantity
p2 ¼ x2

a21
þ y2

a22
ð38Þ
characterizes the internal p < 1 and the external space p > 1, respectively. We consider a wave equation of
the special form ðm ¼ 0; 1; 2; . . .Þ 6
D

"
� 1

c2
o

ot

�
þ c

�2#
gm þ Hð1� pÞp2mdðtÞ ¼ 0 ð39Þ
Here we introduced a phenomenological damping constant c > 0 leading to causal behavior (e.g. Levin
et al., 2002). gm can be written in the form ða ¼ ða1; a2ÞÞ
gmðr; a; tÞ ¼
Z 1

0

p02mþ1Uðr; a; t; p0Þdp0 ð40Þ
where U corresponds to a 2D elliptical ring (corresponding to a 3D continuous fiber tube with elliptical
cross-section) with semi-axes p0ai obeying the equation
D

"
� 1

c2
o

ot

�
þ c

�2#
p0Uðr; a; t; p0Þ þ dðtÞdðp � p0Þ ¼ 0 ð41Þ
Applying Fourier transformation, Uðr; a; t; p0Þ can be written in the form
p0Uðr; a; t; p0Þ ¼ 1

ð2pÞ2
Z
eik�r ~ddðkÞgðk; tÞd2k ð42Þ
where
gðk; tÞ ¼ cHðtÞ sin ckt
k

e�ct ð43Þ
bviously g ¼
P

m¼0 amgm then corresponds to a source density qs ¼ Hð1� pÞf ðp2Þ with f ðp2Þ ¼
P1

m¼0 amp
2m.
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indicates the Green�s function of a damped harmonic oscillator 7 of eigenfrequency ck and
7 Th
8 k̂k1
9 ĝg
~ddðkÞ ¼
Z
e�ik�r

00
dðp0 � p00Þd2r00 ¼ 2pa1a2p0J0ðKp0Þ ð44Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiq
J0ð�Þ indicates the Bessel function of the first kind and of order zero and K ¼ ða1k1Þ2 þ ða2k2Þ2. For
further evaluation the following transformation is useful (Appendix A)
Z

jk̂kj¼1
f ðk̂kiÞdXðk̂kÞ ¼ 1

a1a2

Z
jbKj¼1 f bKKi

ai
sðbKKÞ !

s2ðbKKÞdXðbKKÞ ð45Þ
where
k̂ki ¼
bKKi

ai
sðbKKÞ; sðbKKÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibKK 2

1

a2
1

þ
bKK 2
2

a2
2

r ¼ sðk̂kÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a21k̂k

2
1 þ a22k̂k

2
2

q
ð46Þ
Eq. (42) then assumes the form
Uðr; a; t; p0Þ ¼ cHðtÞe�ct

ð2pÞ2
Re

Z
jbKj¼1 s2ðbKKÞdXðbKKÞ Z

jn0 j¼1

dXðn0Þ
ðsðbKKÞbKK � ðpnþ p0n0Þ þ ct þ i�Þ

ð47Þ
By using (45) this equation can be written as ðr ¼ ðxiÞ ¼ xi ¼ paini, r0 ¼ x0i ¼ ain0i, p
0 ¼ 1Þ and taking into

account the symmetry n0i $ �n0i
Uðr; a; tÞ ¼ a1a2cHðtÞe�ct

ð2pÞ2
Re

Z
jk̂kj¼1

dXðk̂kÞ
Z
jn0 j¼1

dXðn0Þ
ðk̂k � ðr� r0Þ þ ct þ i�Þ

ð48Þ
When we first evaluate the k̂k-integral 8 we obtain (Levin et al., 2002, Eqs. (A.11)ff. therein)
I ¼ c
Z 2p

0

du
ðjr� r0j cosu þ ct þ i�Þ ¼ 2p

H t � jr�r0 j
c

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 � jr�r0 j2

c2

q ð49Þ
Then (48) becomes
Uðr; a; tÞ ¼ a1a2e�ct

Z
jn0 j¼1

H t � jr�r0 j
c

� �
2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 � jr�r0 j2

c2

q dXðn0Þ ð50Þ
which is the space–time convolution of of the Green�s function ĝgðr; tÞ ¼ Hðt � r
cÞ
.
2p

ffiffiffiffiffiffiffiffiffiffiffiffi
t2 � r2

c2

q� �
of the

2D wave equation 9 with the density dð1� pÞdðtÞ. On the other hand, the n0-integral in (48) is
I ¼ Re
Z 2p

0

du
cosu þ n þ i� ð51Þ
when we put n ¼ k�rþct
s and yields
I ¼ 2p Hðn2 � 1Þffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 � 1

p ðHðnÞ � Hð�nÞÞ ð52Þ
is Green�s function fulfils ð 1c2 ð
d
dt þ cÞ2 þ k2Þgðk; tÞ ¼ dðtÞ.

¼ cosu, k̂k2 ¼ sinu, dXðk̂kÞ ¼ du.
is the solution of ðD � 1

c2
o2

ot2Þĝgðr; tÞ þ d2ðrÞdðtÞ ¼ 0.
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and can be also rewritten as
10 B
I ¼ 2p
Z 1

0

d/ðdðcosh/ � nÞ � dðcosh/ þ nÞÞ ð53Þ
With (52) we find for (48) the 1D-integral
Uðr; a; tÞ ¼ ca1a2HðtÞe�ct

2p

Z
jk̂kj¼1

Hððk � rþ ctÞ2 � s2ðk̂kÞÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk � rþ ctÞ2 � s2ðk̂kÞ

q Hðk � rf þ ctÞ � Hð � ½k � rþ ct�ÞgdXðk̂kÞ ð54Þ
Using (53) yields
Uðr; a; tÞ ¼ a1a2HðtÞe�ct

2p

Z
jk̂kj¼1

dXðk̂kÞ
Z 1

0

d/ d t

 (
� k̂k � rþ sðk̂kÞ cosh/

c

!

� d t

 
þ k̂k � rþ sðk̂kÞ cosh/

c

!)
ð55Þ
This expression is especially useful to obtain the frequency domain representation 10 as ðb ¼ xþic
c Þ
Uðr; a; bÞ ¼ a1a2
2p

Z
jk̂kj¼1

dXðk̂kÞ
Z 1

0

d/ H½k̂k � r
�

þ sðk̂kÞ cosh/�eibðk̂k�rþsðk̂kÞ cosh/Þ

� H½ � ðk̂k � rþ sðk̂kÞ cosh/Þ�e�ibðk̂k�rþsðk̂kÞ cosh/Þ
�

ð56Þ
which assumes by using (45) together with (46)
Uðx; y; a1; a2; bÞ ¼
1

2p

Z
jbKj¼1 dXðbKKÞs2ðbKKÞ Z 1

0

d/ H½pbKK � n
�

þ cosh/�eibsðbKÞðpbK�nþcosh/Þ

� H½ �ðpbKK � nþ cosh/Þ�e�ibsðbKÞðpbK�nþcosh/Þ
�

ð57Þ
where xi ¼ paini. The dynamic potential (57) is the solution of the Helmholtz equation of a homogeneous
elliptical shell being the solution of
ðD þ b2ÞU þ dð1� pÞ ¼ 0 ð58Þ

For the internal space ðp < 1Þ is cosh/ þ pbKK � n > 0, thus the second H-function in (57) is vanishing.

Hence (57) becomes for the internal space
Uinðr; a; bÞ ¼ 1

2p

Z
jbKj¼1 dXðbKKÞs2ðbKKÞ Z 1

0

d/eibsðbKÞðpbK�nþcosh/Þ ð59Þ
Eqs. (57) and (59) is the two-dimensional analogue of the corresponding expression of an elliptical shell

in the 3D space (Michelitsch et al., 2003b; Wang et al., 2003). Taking into account the definition of the
Hankel function (e.g. Courant and Hilbert, 1989) ðb ¼ xþic

c , c > 0Þ
Z 1

0

eibs cosh/ d/ ¼ pi
2
H ð1Þ
0 ðbsÞ ð60Þ
and by utilizing (45), Uin of (59) becomes (k̂ki ! n0i and x
0
i ¼ ain0i, r

0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a21n

02
1 þ a22n

02
2

p
denoting a parame-

terization of the radius of the 2D elliptical shell)
eing defined by
R1
�1 e

ixtUðr; a; tÞdt.
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Uinðr; a; bÞ ¼ i

4
a1a2

Z
jn0 j¼1

eibr�n
0
H ð1Þ
0 ðbr0ÞdXðn0Þ ð61Þ
or
Uinðr; a; bÞ ¼ a1a2

Z
jn0 j¼1

eibr�n
0
ĝgðbr0ÞdXðn0Þ ð62Þ
where ĝgðbr0Þ ¼ i
4
H ð1Þ
0 ðbr0Þ denotes the Green�s function of the 2D Helmholtz equation being defined by
ðD þ b2ÞĝgðbrÞ þ d2ðrÞ ¼ 0 ð63Þ
Eq. (61) which holds for the internal space is equivalent to the convolution
Uðr; a; bÞ ¼ i

4
a1a2

Z
jn0 j¼1

H ð1Þ
0 ðbjr� r0jÞdXðn0Þ ð64Þ
An analogue relation as (61)–(64) exist also for an 3D elliptical shell (Michelitsch et al., 2003b). In that

paper the dynamic potential of an elliptical shell (semi-axes a1, a2, a3) was obtained as

(ĵj ¼ ðsinu sin h; cosu sin h; cos hÞ dXðĵjÞ ¼ sin hdhdu)
U3ðx; y; z;a1;a2;a3;bÞ ¼
1

4p

Z
jĵjj¼1

dXðĵjÞs23ðĵjÞðH½Pj � nþ 1�eibs3ðĵjÞðPj�nþ1Þ �H½�ðPj � nþ 1Þ�e�ibs3ðĵjÞðPj�nþ1ÞÞ

ð65Þ
where s3 ¼ 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ĵj2
1

a2
1

þ ĵj2
2

a2
2

þ ĵj2
3

a2
3

r�
, xi ¼ Paini, and P 2 ¼ x2

a2
1

þ y2

a2
2

þ z2

a2
3

. Eq. (65) holds in the entire space. It is easily

verified that expression (57) is reproduced by the limiting transition
Uðx; y; a1; a2; bÞ ¼ lim
a3!1

U3ðx; y; z; a1; a2; a3; bÞ ð66Þ
taking into account that lima3!1 s3ðĵjÞ ¼ sðbKKÞ= sin h, P ! p and put cosh/ ¼ 1
sin h. Moreover we use the

symmetry of the integrand of (65) with respect to h ¼ p
2
for a3 ! 1. This transition also can also be

performed directly in the time domain.

In view of (57) and (59) we observe in analogy to the 3D-case that the imaginary part ImU is given by
ImUinðr; a; bÞ ¼ 1

2p

Z
jbKKj¼1

dXðbKKÞs2ðbKKÞ Z 1

0

d/ sin½bsðbKKÞðpbKK � nþ cosh/Þ� ð67Þ
which holds for both, the external and the internal space. Integrating (47) in (40) yields for the retarded

potential g ¼ g0ðm ¼ 0Þ of a homogeneous density qs ¼ Hð1� pÞ the expression
�
r0 ¼ ðx0iÞ ¼ ðain0iÞ;

sðk̂kÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a21k̂k

2
1 þ a22k̂k

2
2

q �

gðr; a; tÞ ¼ ca1a2HðtÞe�ct

ð2pÞ2
Re

Z
jk̂kj¼1

dXðk̂kÞ
s2ðk̂kÞ

Z
jn0 j¼1

ðk̂k � r̂r0Þ ln½k̂k � ðrþ r0Þ þ ct þ i��dXðn̂n0Þ ð68Þ
Taking into account (45) this expression can also be written as
gðr; a; tÞ ¼ cHðtÞe�ct

ð2pÞ2
Re

Z
jbKKj¼1

dXðbKKÞsðbKKÞ Z
jn0 j¼1

ðbKK � n̂n0Þ lnðsðbKKÞbKK � ½n̂n0 þ pn� þ ct þ i�ÞdXðn̂n0Þ ð69Þ
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4.1. Homogeneous circular fiber and circular fiber tube

Consider a homogeneous fiber with circular cross-section of radius a ¼ a1 ¼ a2 and qsðrÞ ¼ Hða� rÞ.
Eq. (68) then takes the form ðk̂k � r ¼ r cosu1; k̂k � r0 ¼ a cosu2Þ
11 F
gðr; a; tÞ ¼ caHðtÞe�ct

ð2pÞ2
Re

Z 2p

0

du1

Z 2p

0

cosu2 ln½r cosu1 þ a cosu2 þ ct þ i��du2 ð70Þ
coinciding with the expression obtained by Michelitsch et al. (2002) (Eq. (5.15) therein).

It is illuminating to return to (48) which becomes
Uðr; a; tÞ ¼ cHðtÞe�cta2

ð2pÞ2
Z 2p

0

Z 2p

0

du1 du2
ðr cosu1 þ a cosu2 þ ct þ i�Þ ð71Þ
Except for the multiplier a2 the variables r and a occur symmetrically in this expression. This is a
consequence of Ivory�s theorem. 11 That is, we only need to evaluate above expression for the internal space
r < a to obtain U also for the external space r > a by exchanging r and a in the expression U=a2. For
a ¼ a1 ¼ a2, (59) becomes ðpbKK � nþ cosh/ > 0Þ
Uinðr; a; bÞ ¼ a2

2p

Z 2p

0

eibr cosudu
Z 1

0

eiba cosh/d/ ð72Þ
or
Uinðr; a; bÞ ¼ pia2

2
J0ðbrÞH ð1Þ

0 ðbaÞ ð73Þ
where J0 and H
ð1Þ
0 denote the Bessel- and Hankel functions, respectively. Exchanging r and a in the ex-

pression Uin=a2 we obtain for the external space the expression
Uoutðr; a; bÞ ¼ pia2

2
J0ðbaÞH ð1Þ

0 ðbrÞ ð74Þ
This equation can also be written as
Uoutðr; a; bÞ ¼ ĝgðr; bÞ~ddðb; aÞ ð75Þ
where ĝgðr; bÞ ¼ i
4
H ð1Þ
0 ðbrÞ is the Green�s function of the 2D Helmholtz equation and ~ddðb; aÞ is the Fourier

transform of the density dð1� pÞ ðp ¼ r=aÞ
~ddðb; aÞ ¼
Z

dð1� pÞe�ibk̂k�rd2r ¼ 2pa2J0ðbaÞ ð76Þ
Corresponding relations hold in the 2D- and 3D space when the source density function has spherical

symmetry (e.g. Michelitsch et al., 2002, Eq. (A.22); Michelitsch et al., 2003a, Eq. (4.16)). In accordance with
(67) we find for both expressions the same imaginary part, namely ðReH ð1Þ

0 ¼ J0Þ
ImUðr; a; bÞ ¼ pa2

2
J0ðbaÞJ0ðbrÞ ð77Þ
which is symmetric with respect to r $ a as a consequence of Ivory�s theorem. Using expression (55) the
dynamic potentials of heterogeneous fiber sources of the form qs ¼ f ðp2ÞHð1� pÞ with elliptical cross-
or a discussion of the Ivory�s theorem, see e.g. Routh (1982).
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sections can be generated via integral (40). For a homogeneous continuous fiber of circular cross-section

ðqs ¼ Hða� rÞÞ evaluation of (40) in the frequency domain yields for the internal space ðr < aÞ
12 T
gðr; a; bÞ ¼ ginðr; a; bÞ ¼ 1

b2
ip
2

baJ0ðbrÞH ð1Þ
1 ðbaÞ



� 1
�

ð78Þ
and for the external space ðr > aÞ
gðr; a; bÞ ¼ goutðr; a; bÞ ¼ pia
2b

H ð1Þ
0 ðbrÞJ1ðbaÞ ð79Þ
where H ð1Þ
n ðsÞ denotes the Hankel- and JnðsÞ the Bessel functions. Taking into account (20) we have

hðr; a; bÞ ¼ �gðr; a; bÞ=ðcbÞ2. Expressions (78) and (79) coincide with those obtained by Michelitsch et al.
(2002, 2003a). Moreover, we verify that (73), (74) and (78), (79) are related by
Uðr; a; bÞ ¼ a
d

da
gðr; a; bÞ ð80Þ
reflecting the fact that ða d
daHða� rÞ ¼ dð1� pÞ, p ¼ r=aÞ. Eqs. (78) and (79) are solutions of
ðD þ b2Þgðr; a; bÞ þ Hða� rÞ ¼ 0 ð81Þ
which is transferred by application of the operator a d
da into ða d

da gðr; a; bÞ ¼ Uðr; a; bÞÞ
ðD þ b2ÞUðr; a; bÞ þ dð1� pÞ ¼ 0 ð82Þ
In the following sections a numerical method based on Gauss quadrature is applied being useful for

inclusions with arbitrary shapes.
5. Numerical evaluation for fiber inclusion with arbitrary cross-section

In this section we derive a convenient representation for numerical evaluations of the retarded potentials

G I and G II defined in (18) and (22), respectively. We mainly focus on numerical evaluation of fiber in-

clusions with arbitrary cross-sections. 12 The numerical method we propose is based on Gauss quadrature

and applicable in the same way for both the space–time- and the space–frequency domain. In order to study

the effect of different inclusion shapes we focus on fibers with unit density qs ¼ HsðrÞ. The method is also
useful for inhomogeneous densities qsðrÞ ¼ HsðrÞf ðrÞ in the 2D and 3D space (Wang et al., 2003). We
specify the boundary of the 2D source region S as the curve in ðx; yÞ-plane fulfilling F ðx; yÞ ¼ F ðrÞ ¼ 0.
The solutions of Eqs. (19), (20), (23) and (25) in the space–time representation have the form
giðr; tÞ ¼
Z
S
ĝgiðjr� r0j; tÞqsðr0Þd2r0 ði ¼ 1; 2; 3Þ ð83Þ

hiðr; tÞ ¼
Z
S
ĥhiðjr� r0j; tÞqsðr0Þd2r0 ði ¼ 1; 2Þ ð84Þ

g4ðrÞ ¼
Z
S
ĝg4ðjr� r0jÞqsðr0Þd2r0 ð85Þ
where ĝgi, ĥhi, ĝg4 can be found in (37).
here will be only slight restrictions to the nature of the boundary curve (Eqs. (86) and (87)).
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Let s ¼ r0 � r, thus the boundary of the inclusion S in the new coordinate system is characterized by
F ðsþ rÞ ¼ 0. Let us introduce a parameterization of the boundary of the fiber S which can be written in
polar coordinates
13 C
s ¼ rsêesðhÞ ð86Þ

with êesðhÞ ¼ ðcos h; sin hÞ and
rs ¼ Pðh; rÞ; h 2 ½aðrÞ; bðrÞ� ð87Þ

We should note that we confine here on such �regular� cases where each spacepoint on the boundary is

characterized by a unique pair ðrs; hÞ, that is we assume rs is a unique function of h. 13

In (87) we have to distinguish the internal space ðHsðrÞ ¼ 1Þ and the external space ðHsðrÞ ¼ 0Þ, re-
spectively. If spacepoint r is located outside of S then in general ½aðrÞ; bðrÞ� 2 ½0; 2p� are functions of r where
two branches Puðh; rÞ; Plðh; rÞ occur in (87) parameterizing the upper and lower boundary curves of S. If the
spacepoint r is located inside S only one branch rs ¼ Puðh; rÞ exists where Plðh; rÞ ¼ 0 thus a ¼ 0, b ¼ 2p in
(87). Evaluating integrals (83)–(85) by using (86) and (87) yields ðc ¼ 0Þ
giðr; tÞ ¼
ci
2p

Z b

a
dh
Z Pu

Pl

drs
rsHðcit � rsÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c2i t2 � r2s
p" #

¼ ci
2p

Hðcit � P Þ
Z b

a
dh
Z Hiu

Hil

drs
rsffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c2i t2 � r2s
p" #

¼
Z b

a
dhUiðh; r; tÞ ð88Þ

hiðr; tÞ ¼
1

2p

Z b

a
dh
Z Pu

Pl

drs t ln
cit
rs

 "
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2i t2

r2s
� 1

s !
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 � r2s

c2i

s #
Hðcit � rsÞrs

¼ 1

2p
Hðcit � P Þ

Z b

a
dh
Z Hiu

Hil

drs t ln
cit
rs

 "
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2i t2

r2s
� 1

s !
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 � r2s

c2i

s #
rs ¼

Z b

a
dh� iðh; r; tÞ ð89Þ

g4ðrÞ ¼
1

2p

Z b

a
dh
Z Pu

Pl

drs½rs lnðrsÞ� ¼
1

2p

Z b

a
dh

P 2l
4



� P 2u
4
þ 1
2
P 2u lnðPuÞ �

1

2
P 2l lnðPlÞ

�
¼
Z b

a
dhWðh; r; tÞ ð90Þ
where
Uiðh; r; tÞ ¼
ci
2p

Hðcit � P Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2i t2 � H 2il

q

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2i t2 � H 2iu

q �
� iðh; r; tÞ ¼ Hðcit � P Þ

"(
� 1

12pci
ðc2i t2 þ 2H 2iuÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2i t2 � H 2iu

q
þ 1

4p
H 2iut ln

cit
Hiu

 
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2i t2

H 2iu
� 1

s !#

�
"
� 1

12pci
ðc2i t2 þ 2H 2ilÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2i t2 � H 2il

q
þ 1

4p
H 2ilt ln

cit
Hil

 
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2i t2

H 2il
� 1

s !#)

Wðh; rÞ ¼ 1

2p
P 2l
4



� P 2u
4
þ 1
2
P 2u lnðPuÞ �

1

2
P 2l lnðPlÞ

�
ð91Þ
ases of ambiguous rs may occur when the boundary contains coves. Such irregular cases are not considered here.



J. Wang et al. / International Journal of Solids and Structures 40 (2003) 6307–6333 6321
where P ðrÞ ¼ minh½Plðh; rÞ�, and Hilðh; rÞ ¼ min½cit; Plðh; rÞ�, Hiuðh; rÞ ¼ min½cit; Puðh; rÞ�. If we define the
region Xi ¼ fðrs; hÞjrs6 cit, h 2 ½0; 2p�g, N ¼ Xi \ S, then Hil and Hiu are the boundary of N. The boundary
of a region is assumed to be continuous in the variable h. Then Hil, Hiu, Ui, � i, W are also continuous

functions of h. In order to represent integrals (88)–(90) in series form useful for numerics, we use the Gauss–
Chebyshev quadrature formula (e.g. Press et al., 1992). The abscissa and weights for domain ½a; b� are
sk ¼
b � a
2

cos
pk � p=2

N

� �
þ a þ b

2

wk ¼ p
b � a
2N

sin
pk � p=2

N

� �
ðk ¼ 1; 2; 3; . . . ;NÞ

ð92Þ
Thus, for a function vðhÞ 2 C½a; b� we have
Z b

a
vðhÞdh ¼ lim

N!1

XN
k¼1

wktðskÞ ð93Þ
Eq. (93) can be proofed by the theorem of Davis and Rabinowitz (1984). Therefore, (88) and (90) can be

replaced by
giðr; tÞ ¼
Z b

a
dhUiðh; r; tÞ ¼ lim

N!1

XN
k¼1

wkUiðsk; r; tÞ ð94Þ

hiðr; tÞ ¼
Z b

a
dh� iðh; r; tÞ ¼ lim

N!1

XN
k¼1

wk� iðsk; r; tÞ ð95Þ

g4ðrÞ ¼
Z b

a
dhWðh; rÞ ¼ lim

N!1

XN
k¼1

wkWðsk; rÞ ð96Þ
With results (94)–(96) we can write for the dynamic potentials G I and G II of Eqs. (18) and (22) in the space–

time domain
G Iðr; tÞ ¼
1

C66
hg2ðr; tÞ þ

1

q
r
r h1ðr; tÞf � h2ðr; tÞg

¼ lim
N!1

XN
k¼1

wk
1

C66
hU2ðsk; r; tÞ



þ 1

q
r
rf� 1ðsk; r; tÞ � � 2ðsk; r; tÞg

�
ð97Þ
and
G IIðr; tÞ ¼ e3 
 e3
1bCC44 g3ðr; tÞ þ ðe3 
 e4 þ e4 
 e3Þ

e15bCC44g11 g3ðr; tÞ
þ e4 
 e4

e215bCC44g211 g3ðr; tÞ
"

þ 1

g11
g4ðrÞdðtÞ

#

¼ lim
N!1

XN
k¼1

wk e3

(

 e3

1bCC44 U3ðsk; r; tÞ þ ðe3 
 e4 þ e4 
 e3Þ
e15bCC44g11 U3ðsk; r; tÞ

þ e4 
 e4
e215bCC44g211U3ðsk; r; tÞ

"
þ 1

g11
Wðsk; rÞdðtÞ

#)
ð98Þ
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With (97) and (98) we have determined the retarded quasi-plane potentials (15) for a homogeneous spatial

density qs ¼ HsðrÞ for fiber inclusions with arbitrary fiber cross-sections.
6. Dynamic fields of a fiber inclusion with arbitrary cross-section

In the last section we have represented the dynamic electroelastic potentials due to a dynamically

transforming inclusion of arbitrary shape with density dðtÞHsðrÞ in series form. In this section we use this
result to solve the inclusion problem, i.e. we determine the induced generalized displacement fieldU for the

quasi-plane transversely isotropic medium. We assume that the inclusion undergoes a uniform eigenstrain

�� and eigenelectric field E� of the form (5). The inclusion has the same electroelastic moduli C , e, g and
mass density q as the piezoelectric transversely isotropic matrix material. Taking into account (12) we can
write the generalized displacements in the form (N ! 1)
u1 ¼
1

C66

XN
m¼1

wm f1ðrÞU2ðsm; r; tÞ



þ 1
q

f1ðrÞ o2

ox2

�
þ f2ðrÞ o2

oxoy

�
ð� 1ðsm; r; tÞ � � 2ðsm; r; tÞÞ

�

u2 ¼
1

C66

XN
m¼1

wm f2ðrÞU2ðsm; r; tÞ



þ 1
q

f1ðrÞ o2

oxoy

�
þ f2ðrÞ o2

oy2

�
ð� 1ðsm; r; tÞ � � 2ðsm; r; tÞÞ

�

u3 ¼
1bCC44
XN
m¼1

wm f3ðrÞ
�


þ e15
g11

f4ðrÞ
�

U3ðsm; r; tÞ
�

u4 ¼
e15

g11 bCC44
XN
m¼1

wm f3ðrÞ
�


þ e15
g11

f4ðrÞ
�

U3ðsm; r; tÞ þ dðtÞ f4ðrÞ
g11

Wðsm; rÞ
�

ð99Þ
where functions Ui, � i, W are defined in (91). With (99) we have represented the dynamical generalized

displacement fields due to a dynamically transforming fiber inclusion with arbitrary cross-section according

to the eigenfields (5) in a form which is useful for numerical evaluation.
7. Numerical examples and visualization

We devote this section to some special cases to confirm the numerical efficiency of the series formulae of
(94)–(96).

7.1. Homogeneous fiber inclusions with circular cross-sections

The dynamic potential of a continuous fiber inclusion with circular cross-section (radius a) of unit
density qsðrÞ ¼ Hða� rÞ in the space–frequency domain is given by Eqs. (78) and (79) and fulfills
ðD þ b2Þgðr; a; bÞ þ Hða� rÞ ¼ 0 ð100Þ
For the frequency representation of h defined by (20) we have
hðr; a; bÞ ¼ � 1

c2b2
gðr; a; bÞ ð101Þ
In order to determine the corresponding retarded potentials g, h numerically in the time domain, we use
numerical Fourier (Laplace) transformation (Wang, 2001; Wang et al., 2002). To this end we notice that the
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frequency domain potentials above are based on the definition of Fourier transform (for example, a

function f ðtÞ) of
14 T
15 T

extensi
~ff ðxÞ ¼
Z 1

�1
f ðtÞeixt dt

f ðtÞ ¼ 1

2p

Z 1

�1
~ff ðxÞe�ixt dx

ð102Þ
The potentials g, h in time space domain with infinitesimal damping � ! 0þ become (Wang, 2001; Wang
et al., 2002)
gðr; a; tÞ ¼ lim
n;M!1

c
eð�þ7i=2

nÞt

2nþ1p

XM
k¼�M

g r; a; i�
�

þ k � 7
2n

�
e�itk=2

n

hðr; a; tÞ ¼ lim
n;M!1

c
eð�þ7i=2

nÞt

2nþ1p

XM
k¼�M

h r; a; i�
�

þ k � 7
2n

�
e�itk=2

n

ð103Þ
where M is related to the frequency range of gðr; a; bÞ, hðr; a; bÞ and n is related to the time range within
which the inverse result has good precision. g4 defined by (85) is available in closed form (Michelitsch et al.,
2002)
g4ðr; aÞ ¼
1

4
Hða� rÞð2a2 lnðaÞ � a2 þ r2Þ þ 1

2
Hðr � aÞa2 lnðrÞ ð104Þ
Let us now consider the material PZT-5H with the electroelastic moduli
q ¼ 7500 kgm�3; CE11 ¼ 127 GPa; CE
44 ¼ 23:0 GPa

CE66 ¼ 23:5 GPa; e15 ¼ 17:0 Cm�2; g11 ¼ 1:5� 10�8 Fm�1 ð105Þ
Thus, in terms of (21) and (24), we have
c1 � 4115 m s�1; c2 � 1770 m s�1; c3 � 2374 m s�1
Fig. 1 shows the propagation of the retarded potential g1ðr; a; tÞ of a circular source dðtÞHða� rÞ. Solid
lines represent the numerically generated results of (94) by using (B.4), (B.5) and (B.8) where

a1 ¼ a2 ¼ a ¼ 0:1 m, N ¼ 100. The hollow markers represent the results generated by the numerical Fourier
transformation (103) by using the exact results for g1ðr; a; bÞ of Eqs. (78) and (79) for a fiber with radius
a ¼ 0:1 m, ðM ¼ 800; n ¼ 2; � ¼ 0:002Þ. Fig. 1 indicates that the applied numerical method operates with
high accuracy. In the internal space g1ðr; a; tÞ shows linear behavior of g1ðr; a; tÞ ¼ c21t for t < t0 ¼ ða� rÞ=c
which is in accordance with the exact result (below Eq. (106)). 14 Moreover, it can be seen in Fig. 1 that g1 is
in the outside space r > a a circular (cylindrical) wave package propagating with wave speed c1, arriving at
a circle r in the external space when t ¼ ðr � aÞ=c is equal the runtime from the circle r to the closest source
point being located on the boundary of the fiber. A speciality of the 2D medium is that once the wave

package has reached a certain circle r, the amplitude will remain non-zero 8t > ðr � aÞ=c1. This non-zero
tail of a wave package uniformly emitted due to a density Hða� rÞdðtÞ is a consequence of the retarded 2D
Green�s function ĝg ¼ 1=Hðt � R=cÞ=ð2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 � ðR=cÞ2

q
Þ non-vanishing 8t > R=c. This is in contrast to the 3D

case where the amplitude is vanishing for times greater than the runtime from the spacepoint to the fur-
thermost source point. 15
his remarkable property also occurs in the 3D case.

his is a consequence of the 3D retarded Green�s function ĝg3ðR; tÞ ¼ dðt � R=cÞ=ð4pRÞ which contributes only for R ¼ ct. For an
ve discussion of these runtime effects and a comparison of the 2D and 3D case we refer to our recent paper Wang et al. (2003).
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Fig. 2 represents the 3D plot of the propagation of the same retarded potential g1ðr; a; tÞ as in Fig. 1. The
plot shows the linear behavior in the internal space as well as the propagation of the wave front. The non-

zero tail for increasing time t is also indicated.
Fig. 3 shows the propagation of the potential h2ðr; a; tÞ of the same circular inclusion as in Figs. 1 and 2.

Solid lines represent the results of (95) using (B.4), (B.5) and (B.8) with a1 ¼ a2 ¼ a ¼ 0:1 m, N ¼ 100.
Hollow markers represent the same potential generated by (103) with ðM ¼ 800; n ¼ 2; � ¼ 1Þ by integrating
the exact dynamic potential (Eqs. (78) and (79)).

Fig. 4 shows the Newtonian potential g4ðr; aÞ of the circular inclusion of Fig. 3 (a ¼ 0:1 m). Solid lines
represent the results generated by (96) using (B.4) and (B.5) with N ¼ 100. Hollow markers represent the
same potential generated by the exact formula (104).

These examples show high accuracy agreement between the numerical time domain Fourier integrals of

the close form solutions (78) and (79) and the numerically generated results based on formulae (94) and
(95). Furthermore, the numerical evaluation of (96) approximates the exact Newtonian potential (104) with

high accuracy.

7.2. Homogeneous elliptical fiber inclusion

Consider the maximum value of potential gi. It is reasonable that the maximum should appear when the
spacepoint is located inside the source region with a ¼ 0, b ¼ 2p and Plðh; rÞ ¼ 0, i.e., Hil ¼ 0. Now, let us
consider the function Ui of (91). Thus, we have maxðUiÞ ¼ c2i t

2p as function of t when Hiu ¼ cit, i.e., the circle
rs ¼ cit is still inside the source region or cit6 Pu. Thus we find the remarkable properties
giðr; tÞ ¼ Hðt0ðrÞ � tÞ
Z b

a
dhUiðh; r; tÞ ¼

Z 2p

0

dh
c2i t
2p

¼ c2i t; t 2 ½0; t0ðrÞ� ð106Þ



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

0

0.5

1

1.5

x 10
–4

0

50

100

150

200

250

300

350

400

r (m)

t (s)

g 1 (
m

2 s–
1 )

Fig. 2. 3D plot of the propagation of the retarded potential g1ðr; a; tÞ of Fig. 1 generated by Eqs. (94) with a ¼ a1 ¼ a2 ¼ 0:1 m,
N ¼ 100.

0

0.2

0.4

0.6

0.8

1
0

2
4

6

x 10
–4

0

2

4

6

8

x 10
–6

t (s)

r (m)

h 2  (
m

2 s)

Fig. 3. Propagation of the potential h2ðr; a; tÞ of the same inclusion as in Figs. 1 and 2. Solid lines represent the results of (95) with
a1 ¼ a2 ¼ a ¼ 0:1 m, N ¼ 100. Hollow markers represent the results generated by (103) ðM ¼ 800; n ¼ 2; � ¼ 1Þ together with (101) by
using the exact solutions for gðr; a;bÞ of Eqs. (78) and (79).

J. Wang et al. / International Journal of Solids and Structures 40 (2003) 6307–6333 6325



16 T

0 0.05 0.1 0.15 0.2
–0.015

–0.014

–0.013

–0.012

–0.011

–0.01

–0.009

–0.008

r (m)

g 4 (
m

2 )

Fig. 4. Newtonian potential g4ðr; aÞ of a homogeneous circular source Hða� rÞ. Solid lines represent the numerical result of (96)
(by using (B.4), (B.5) and (B.8)) with a1 ¼ a2 ¼ a ¼ 0:1 m, N ¼ 100. Hollow markers represent the exact results given by (104) with
a ¼ 0:1 m.

6326 J. Wang et al. / International Journal of Solids and Structures 40 (2003) 6307–6333
hiðr; tÞ ¼ Hðt0ðrÞ � tÞ
Z b

a
dh� iðh; r; tÞ ¼

Z 2p

0

dh
c2i t

3

12p
¼ 1
6
c2i t

3; t 2 ½0; t0ðrÞ� ð107Þ
where t0ðrÞ ¼ minh½Puðr;hÞ�
ci

. Eqs. (106) and (107) remain also true for fiber inclusions with arbitrary cross-

sections and in the 3D case of an inclusion of arbitrary shape. In the time range 0 < t < t0ðrÞ waves arrive at
r emitted from circles with radii cit around r being completely inside the inclusion. Since in this time range
no waves arrive at r which are emitted from boundary points, gi, hi are independent on ai. This effect takes
place uniformly for all r inside the inclusion, thus also the r-dependence is absent for 0 < t < t0ðrÞ. The
analogue observation is also true for 2D homogeneous inclusions with arbitrary boundaries.

In a sense this dynamical effect which also holds in the 3D case, can be regarded as the dynamical

counterpart to the static Eshelby theorem (according to which the strains inside an elliptical inclusion are of

the same polynomial order than the eigenstrains). 16 Moreover, for any internal spacepoint the maximum

value of gi is taken when t ¼ t0ðrÞ and therefore the absolute maximum value of gi is taken at the fur-

thermost internal spacepoint from the boundary of the inclusion. This is true for 2D inclusions with arbi-

trary boundaries. Since maxrðt0ðrÞÞ ¼ maxr½minh½Puðr;hÞ�
ci

�, we get
max
rt

½giðr; tÞ� ¼ cimax
r

½min
h
ðPuðr; hÞÞ�
For the elliptical inclusion, we get
max
rt

½giðr; tÞ� ¼ ciminða1; a2Þ
where a1, a2 are semi-axes of the ellipse.
he 2D and 3D cases are discussed in our recent paper, Wang et al. (2003).
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Figs. 5 and 6 show the time evolution of potential g1ðr; tÞ in the origin r ¼ 0 of a fiber inclusion for
elliptical cross-section generated by ((94) together with (B.4), (B.5) and (B.8)) (density

dðtÞHð1� pÞp2 ¼ x2

a2
1

þ y2

a2
2

, respectively). In Fig. 5 the semi-axis a2 ¼ 0:1 m is fixed and semi-axis a1 ¼ 0:01,
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0.02, 0.03, 0.04 m is varied. In Fig. 6 a1 ¼ 0:1 m is fixed and a2 ¼ 0:1, 0.2, 0.3, 0.4 m is variable. These Figs.
indicate that for t < t0 ¼ minða1; a2Þ=c the retarded potential shows linear behavior independent on the
semi-axes ai as indicated by the exact Eq. (106). For both cases in the linear range, the slope is equal to c21.
Moreover, g1 takes its maximum value g1ð0; t0Þ ¼ c1 minða1; a2Þ in the center of the ellipse (r ¼ 0).
Figs. 7 and 8 show 3D plots of the propagation of the retarded potential g1ðr; tÞ for an elliptical inclusion

(source density dðtÞHð1� pÞ, a1 ¼ 0:3 m, a2 ¼ 1:0 m) in x- and y-directions, respectively. The plots are
generated by employing Eqs. (94) together with (B.4), (B.5) and (B.8).

Fig. 9 shows the 3D plot of the propagation in ðx; 0Þ-direction of the potential h2ðr; tÞ for the same
elliptical inclusion as in Figs. 7 and 8 where Eqs. (95) with (B.4), (B.5) and (B.8) have been used.

Fig. 10 shows the 3D plot of a Newtonian potential g4ðrÞ generated by Eq. (96) using (B.4), (B.5) and
(B.8) of the same elliptical inclusion as in Figs. 7–9.

The above examples demonstrate the interplay of runtime and superposition effects. Moreover, all of
these examples show high precision agreement of the purely numerically generated results and the results

where closed-form solutions are involved.
8. Conclusions

In the present paper the dynamic electroelastic fields (displacements and electric potential) in a trans-

versely isotropic medium with dynamically transforming continuous fiber inclusion are studied. The dy-

namic fields are expressed in terms of three types of scalar functions, namely the retarded potential g
defined by (19), the related potential h of (20) and the Newtonian potential g4 defined by (25). The latter
does not affect the wave propagation.

By means of Fourier transformation compact integral formulae are derived for the dynamic and re-

tarded potentials of continuous fiber inclusions with elliptical cross-sections and continuous fiber tubes
(Eqs. (47)ff.). For special cases (circular fiber inclusions and fiber tubes) known closed-form expressions

(Michelitsch et al., 2002, 2003a) are reproduced.

For fiber inclusions with arbitrary cross-sections a numerical procedure is applied based on Gauss

quadrature technique. The numerically evaluated dynamic and retarded potentials determine completely

the generalized displacements (displacements and electric potential). The numerical solution is obtained in

terms of simple scalar functions (expressions (91), (94)–(96), respectively). The efficiency and high accuracy

of the numerical procedure is confirmed in Section 7 by means of a circular inclusion. Characteristic

propagation and runtime effects are found analytically and numerically. For the retarded potential g of a
homogeneous density dðtÞHsðrÞ they can be summarized as follows: (i) For times being smaller than the
runtime from the spacepoint r to the closest boundary point the behavior in the internal space is governed

by a uniform linear increase with time being independent on r and the geometric characteristics (shape) of

the source region. (ii) g takes its maximum value in the furthermost internal spacepoint from the boundary.
The maximum occurs at the time being the runtime from this spacepoint to the closest boundary point (e.g.

for a circular inclusion in its center). (iii) For an external spacepoint g is non-vanishing only for times
greater than the runtime to the closest boundary point. (i)–(iii) are also true in the corresponding 3D case as

recently found by Wang et al. (2003). (iv) Unlike in the 3D case, in the 2D case once the wave has arrived,
g > 0 remains non-vanishing for all times greater than this runtime. (i)–(iv) are true for continuous fiber
inclusions of arbitrary cross-sections with source density dðtÞHsðrÞ. (iii) and (iv) remain true even for in-
homogeneous densities dðtÞHsðrÞqsðrÞ whereas (i) and (ii) have to be modified. 17
17 A discussion of inhomogeneous densities of the 3D case can be found in our recent paper, Wang et al. (2003).
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The present results and approaches are useful for the solution of a wide range of dynamical engineering

problems in the 2D piezoelectric space (corresponding to a 3D transversely isotropic medium with fiber

inclusions). They can be applied in self consistent models to determine the effective dynamic material

properties and are useful for the description of wave propagation phenomena in piezoelectric fiber com-
posites.
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Appendix A

In this appendix we give a proof for Eq. (45). To that end we consider ðk ¼ kk̂kÞ
I ¼
Z
jk̂kj¼1

f ðk̂kiÞdXðk̂kÞ ¼
Z
jk̂kj¼1

f ðk̂kiÞk̂k � k̂kdXðk̂kÞ ðA:1Þ
by using Gauss� theorem this integral can be rewritten as
I ¼
Z
k2<1

f ðk̂kiÞdXðk̂kÞ ¼
Z
jk̂kj¼1

rkðkf ðk̂kiÞÞd2k ðA:2Þ
Now we put ki ¼ Ki
ai
¼ KbKiai ðPi

bKK 2i ¼ 1Þ. The region k2 ¼ K2
P

i
bK2i
a2i
< 1 is characterized by KðbKKÞ6 sðbKKÞ ¼

1
. ffiffiffiffiffiffiffiffiffiffiffiffiP

i

bKK 2i
a2i

r
. Thus I becomes
I ¼ 1

a1a2

Z
jbKj¼1 dXðbKKÞ Z sðbKÞ

0

d

dK
K2f K

bKKi

ai

 ! !
dK ðA:3Þ
which yields after the K-integration (45)
I ¼ 1

a1a2

Z
jbKj¼1 f bKKi

ai
sðbKKÞ !

s2ðbKKÞdXðbKKÞ ðA:4Þ
Appendix B

We consider an elliptical fiber inclusion with boundary shape characterized by
F ðr0Þ ¼ x02

a21
þ y02

a22
� 1 ¼ 0 ðB:1Þ
With spacepoint r ¼ ðx; yÞ and s ¼ ðxs; ysÞ ¼ r0 � r, we have r0 ¼ sþ r thus (B.1) becomes
F ðsþ rÞ ¼ ðxs þ xÞ2

a21
þ ðys þ yÞ2

a22
� 1 ¼ 0 ðB:2Þ
By putting xs ¼ rs cosðhÞ, ys ¼ rs sinðhÞ, we can express the boundary of the region F ðsþ rÞ in polar
coordinates as
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rs ¼
�a21y sinðhÞ � a22x cosðhÞ �

ffiffiffiffi
Q

p

a21 sin
2ðhÞ þ a22 cos2ðhÞ

ðB:3Þffiffiffip

where Q ¼ a21a

2
2½�ðy cosðhÞ � x sinðhÞÞ2 þ a21 sin

2ðhÞ þ a22 cos
2ðhÞ�. Notice that Q

a2
1
sin2ðhÞþa2

2
cos2ðhÞ P 0, therefore
Pu ¼
�a21y sinðhÞ � a22x cosðhÞ þ

ffiffiffiffi
Q

p

a21 sin
2ðhÞ þ a22 cos2ðhÞ

ðB:4Þ
For the internal space we have a ¼ 0, b ¼ 2p for the lower and upper limits of the angle and Pl ¼ 0 for
the lower limit of the radius rs. On the other hand, if the spacepoint is located outside the source region, the
lower limit of radius coordinate is
Pl ¼
�a21y sinðhÞ � a22x cosðhÞ �

ffiffiffiffi
Q

p

a21 sin
2ðhÞ þ a22 cos2ðhÞ

ðB:5Þ
To obtain the lower and upper angle limits a, b, we put Q ¼ 0 which leads to
tanðhÞ ¼ �xy �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�a21a22 þ a22x2 þ a21y2

p
a21 � x2

 !
ðB:6Þ
thus
c1 ¼ arctan
�xy þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�a21a22 þ a22x2 þ a21y2

p
a21 � x2

 !

c2 ¼ arctan
�xy �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�a21a22 þ a22x2 þ a21y2

p
a21 � x2

 ! ðB:7Þ
where �p=26 c1, c26 p=2. In view of the symmetry of the inclusion we have to consider only spacepoints
which satisfy x > 0, y > 0 being located outside the inclusion. For this case the lower and upper limits of
angle coordinate satisfy p=2 < a < 3p=2, p < b < 2p, which together with (B.7) leads to
a ¼ p þ c1

b ¼ p � 1
2

psignðc2Þ½1� signðc2Þ� þ c2
ðB:8Þ
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